{"title":"Local strain evolution and microstructural characterisation of hydrogen-induced damage at different strain rates in dual phase (DP 780) steel","authors":"Anuranjan Kumar, Surajit Kumar Paul","doi":"10.1016/j.finmec.2023.100237","DOIUrl":null,"url":null,"abstract":"<div><p>Effect of strain rate on the damage behaviour of hydrogen (H)-charged dual phase (DP 780) steel via the <em>in-situ</em> digital image correlation (DIC) technique is investigated in this work. Since stress concentration sites like notches are common in engineering practice, two types of uniaxial tensile tests have been carried out using smooth and notch tensile specimens for detailed analysis. The study reveals the significance of hydrogen embrittlement in DP 780 steel, as no strain rate effect is observed on the mechanical property in the case of an uncharged smooth tensile specimen. However, a significant effect of strain rate is detected after the H-charging. Hydrogen showed a lesser ability to aid the failure process when the applied strain rate is raised, as it could diffuse over a limited distance during the tensile test. The local axial and width strains, along with necking and fracture strains, are quantified for each specimen to understand the strain rate effect better. A centre-line crack is observed in every H-charged specimen's fracture surface owing to the presence of MnS inclusion in DP steel along the central line and its interaction with the atomic hydrogen. Moreover, the degree of hydrogen embrittlement is substantially higher in the notch tensile specimens than in the smooth ones.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100237"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Effect of strain rate on the damage behaviour of hydrogen (H)-charged dual phase (DP 780) steel via the in-situ digital image correlation (DIC) technique is investigated in this work. Since stress concentration sites like notches are common in engineering practice, two types of uniaxial tensile tests have been carried out using smooth and notch tensile specimens for detailed analysis. The study reveals the significance of hydrogen embrittlement in DP 780 steel, as no strain rate effect is observed on the mechanical property in the case of an uncharged smooth tensile specimen. However, a significant effect of strain rate is detected after the H-charging. Hydrogen showed a lesser ability to aid the failure process when the applied strain rate is raised, as it could diffuse over a limited distance during the tensile test. The local axial and width strains, along with necking and fracture strains, are quantified for each specimen to understand the strain rate effect better. A centre-line crack is observed in every H-charged specimen's fracture surface owing to the presence of MnS inclusion in DP steel along the central line and its interaction with the atomic hydrogen. Moreover, the degree of hydrogen embrittlement is substantially higher in the notch tensile specimens than in the smooth ones.