Forces in mechanics最新文献

筛选
英文 中文
Probabilistic fracture analysis of double edge cracked orthotropic laminated plates using the stochastic extended finite element method 使用随机扩展有限元法对双边缘开裂正交层压板进行概率断裂分析
Forces in mechanics Pub Date : 2024-02-01 DOI: 10.1016/j.finmec.2024.100257
Shailesh P. Palekar , Atteshamuddin S. Sayyad , Prasad M. Patare , Achchhe Lal
{"title":"Probabilistic fracture analysis of double edge cracked orthotropic laminated plates using the stochastic extended finite element method","authors":"Shailesh P. Palekar ,&nbsp;Atteshamuddin S. Sayyad ,&nbsp;Prasad M. Patare ,&nbsp;Achchhe Lal","doi":"10.1016/j.finmec.2024.100257","DOIUrl":"https://doi.org/10.1016/j.finmec.2024.100257","url":null,"abstract":"<div><p>The current computational investigation employs the stochastic extended finite element approach, which the authors have previously developed, to investigate the probabilistic fracture response of double edge cracked orthotropic laminated composite plates under varying stress conditions. The well-known extended finite element method is used to determine the mean and coefficient of variation of stress intensity factors KI and or KII by treating the input parameters as random variables. This is done under the assumption that all of the laminated plate's layers are perfectly bonded to one another and that there is no delamination effect between the layers, the matrix, or the fibres. And it's believed that the plate has through thickness crack. A combination of input random Gaussian variables is used to model the various input factors, such as the lamination angle, the applied loads, and the crack parameters (such the crack length and location). Typical numerical results are shown to investigate the effects of varying degrees of uncertainty in the lamination angle, crack length, crack length to plate width ratio, crack positions, and applied tensile, shear, and combined (tensile and shear) stresses. An excellent agreement arises when the findings generated with the stochastic extended finite element method methodology are assessed against the results found in the published literature through Monte Carlo simulations.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100257"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359724000039/pdfft?md5=32ffd990b3795f81bfb1b08f4738d2e0&pid=1-s2.0-S2666359724000039-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical characterizations of nano-indentation responses of low viscosity and high viscosity bone cements 低粘度和高粘度骨水泥纳米压痕反应的实验和数值表征
Forces in mechanics Pub Date : 2024-02-01 DOI: 10.1016/j.finmec.2024.100256
Sonalal Prasad Chaurasiya, Rajesh Ghosh
{"title":"Experimental and numerical characterizations of nano-indentation responses of low viscosity and high viscosity bone cements","authors":"Sonalal Prasad Chaurasiya,&nbsp;Rajesh Ghosh","doi":"10.1016/j.finmec.2024.100256","DOIUrl":"https://doi.org/10.1016/j.finmec.2024.100256","url":null,"abstract":"<div><p>The present work involves experimentally determining the nano-mechanical properties (elastic modulus, hardness, plasticity index, and recovery resistance) of low viscosity (LV) and high viscosity (HV) Poly (methyl methacrylate) (PMMA) bone cement from load-displacement data obtained using Berkovich indenter, and then the effect of indentation parameters on these properties are explored through a validated three-dimensional (3D) finite element (FE) simulation. The 3D FE model includes a specimen with bilinear isotropic elastic-plastic material model. The good agreement between experimental and simulated load-displacement data for both variants of the bone cement emphasizes the applicability of the 3D FE model to predict mechanical behavior at nano scale indentation for both PMMA bone cements. The experimental and numerical analysis yield significantly higher values of elastic modulus, hardness, plasticity index, and recovery resistance for LV compared to that of HV bone cement. The experimentally determined values of elastic modulus, hardness, plasticity index, and recovery resistance for LV bone cement are 5.04±0.21 GPa, 312.33±2.84 MPa, 0.51±0.04, and 258.90±3.34 GPa, respectively, whereas the corresponding values for HV bone cement are found to be 4.45±0.29 GPa, 301.41±3.67 MPa, 0.42±0.01, and 191.63±1.66 GPa. The simulated load-displacement data concludes a remarkable results (elastic modulus, hardness, plasticity index, and recovery resistance), which suggest that the both variants of PMMA bone cement attain higher peak load along with larger hysteresis curve for increased indenter tip radius for a given indentation depth. The friction coefficient along the contact surfaces of specimen with indenter has no pronounced effect on the measurement of mechanical properties of bone cements.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100256"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359724000027/pdfft?md5=af47c7b4db8b29af6de48fc9b0206871&pid=1-s2.0-S2666359724000027-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139674119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wired threaded inserts in joints with steel screws and aluminium nuts: A parametric study on their effectiveness 钢螺钉和铝螺母连接中的有线螺纹嵌件:关于其有效性的参数研究
Forces in mechanics Pub Date : 2024-02-01 DOI: 10.1016/j.finmec.2024.100258
Venanzio Giannella , Davide Romano , Maurizio Greco , Raffaele Molitierno , Raffaele Sepe , Enrico Armentani
{"title":"Wired threaded inserts in joints with steel screws and aluminium nuts: A parametric study on their effectiveness","authors":"Venanzio Giannella ,&nbsp;Davide Romano ,&nbsp;Maurizio Greco ,&nbsp;Raffaele Molitierno ,&nbsp;Raffaele Sepe ,&nbsp;Enrico Armentani","doi":"10.1016/j.finmec.2024.100258","DOIUrl":"https://doi.org/10.1016/j.finmec.2024.100258","url":null,"abstract":"<div><p>The aim of this research was to investigate on bolted joints characterized by steel screws and aluminum nuts by means of numerical simulation. 2D and 3D CAD/FEM parametric models were developed in order to determine the preload distribution in joints with and without a Wired Threaded Inserts (WTI), so as to compare the trend of the stress distributions and the amount of load applied to each thread. The operating mechanisms and the effectiveness of a WTI were investigated in a parametric study by means of which the most important factors of the joint (materials, class, diameter, Engagement Ratio (ER), tolerance bands) were varied.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100258"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359724000040/pdfft?md5=848e741eb08d907bdb63dfe928b97a38&pid=1-s2.0-S2666359724000040-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design aspects of a CMC coating-like system for hot surfaces of aero engine components 用于航空发动机部件热表面的类 CMC 涂层系统的设计问题
Forces in mechanics Pub Date : 2024-01-05 DOI: 10.1016/j.finmec.2023.100251
Giacomo Canale , Felice Rubino , Roberto Citarella
{"title":"Design aspects of a CMC coating-like system for hot surfaces of aero engine components","authors":"Giacomo Canale ,&nbsp;Felice Rubino ,&nbsp;Roberto Citarella","doi":"10.1016/j.finmec.2023.100251","DOIUrl":"10.1016/j.finmec.2023.100251","url":null,"abstract":"<div><p>Ceramic Matrix Composite (CMC) is an emerging material system that can be a game changer in the aerospace industry, both civil and military. CMCs components are, in fact, lighter and less prone to fatigue failure in a high temperature environment. However, at high temperatures, the diffusion of oxygen and water vapour inside the CMC can have detrimental effects. Therefore, the presence of protective coating is necessary to extend the life of CMC components. In the present work, a three-layers coating, consisting of a silicon bond (BND), adhesively bonded to the CMC, an Environment Barrier Coating (EBC) and a softer layer 3 (LAY3), is investigated for a CMC component. An aero-engine high pressure turbine seal segment was considered. Two design aspects are covered: (i) creep law is determined and calibrated in environment Abaqus from the experimental data of each coating layer available in the open literature, to provide a suitable instrument for the creep relaxation analyses of hot components; (ii) thickness sensitivity study of each layer of the coating is conducted to minimise the interface stresses of coating with substrate in order to mitigate cracking and removal/spalling phenomena when exposed to temperature gradients and to increase their service life. These two different aspects are combined together to predict the coating stress field as a function of service time.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100251"},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000860/pdfft?md5=bc750c10ce4a59f753784562c8a94947&pid=1-s2.0-S2666359723000860-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139395503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonic fatigue tests on maraging 300 steel: Under solution annealed, after aging heat treatment and under pre-corrosion attack 马氏体时效 300 钢的超声波疲劳试验:固溶退火、时效热处理和预腐蚀条件下的超声波疲劳试验
Forces in mechanics Pub Date : 2024-01-01 DOI: 10.1016/j.finmec.2023.100253
Julio A. Ruiz Vilchez , Gonzalo M. Domínguez Almaraz , Aymeric E. Domínguez
{"title":"Ultrasonic fatigue tests on maraging 300 steel: Under solution annealed, after aging heat treatment and under pre-corrosion attack","authors":"Julio A. Ruiz Vilchez ,&nbsp;Gonzalo M. Domínguez Almaraz ,&nbsp;Aymeric E. Domínguez","doi":"10.1016/j.finmec.2023.100253","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100253","url":null,"abstract":"<div><p>Ultrasonic fatigue tests were carried out under continuous cycling on the maraging 300 steel for the following conditions: (A) solution annealed (as received from supplier), (B) after aging heat treatment of 490 °C for 6 h, (C) after pre-corrosion attack, and (D) specimens loaded at 293 MPa at room temperature without failure until 1.0E+10 cycles. The ultrasonic fatigue strength of the four modalities were compared and discussed in regard the crack initiation inclusion, the heat treatment and the testing conditions. Crack initiation and propagation under this fatigue testing modality was analyzed; revealing that ultrasonic fatigue strength is related to internal TiN-inclusions and its parameters of shape and orientation, in regard the uniaxial applied load. Numerical simulations were carried out to investigate the stress concentration of an ellipsoidal void of 150 mm (longer radius), and a TiN ellipsoidal inclusion of same dimensions. In addition, SEM (Scanning Electron Microscope) analysis was carried out on the fracture surfaces to determine the crack initiation and propagation zones.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100253"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000884/pdfft?md5=dd97e211202ae069608ebb3803b26d0b&pid=1-s2.0-S2666359723000884-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139108910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of fatigue behavior in pre-corroded AZ31 magnesium alloy 预腐蚀 AZ31 镁合金的疲劳行为建模
Forces in mechanics Pub Date : 2023-12-31 DOI: 10.1016/j.finmec.2023.100254
Hamed Bahmanabadi , Madjid Shamsarjmand
{"title":"Modeling of fatigue behavior in pre-corroded AZ31 magnesium alloy","authors":"Hamed Bahmanabadi ,&nbsp;Madjid Shamsarjmand","doi":"10.1016/j.finmec.2023.100254","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100254","url":null,"abstract":"<div><p>In this paper, the mechanical and fatigue behavior of pre-corroded wrought AZ31 magnesium alloy was studied. For this purpose, the standard 3.5 wt.% NaCl corrosive solution was used. The samples were immersed for 3–24 h to characterize the effect of immersion time on the mechanical properties of AZ31 alloy. Standard specimens were also immersed for 1–3 h for the fatigue testing. Results of tensile tests showed that thorough the immersion of 0–24 h, the deviation of ultimate tensile stress and yield stress were less than 4 % and 6 %, respectively. Moreover, the deviation of elastic modulus was less than 20 %. Although, the elongation was deviated by 81 % through the immersion of 0–24 h. A drastic decrease was observed in the fatigue lifetime of pre-corroded alloy compared to the bare alloy. As the immersion time increased, the fatigue lifetime decreased. Maximum reduction in fatigue strength occurred when the immersion time was 3 h and the stress amplitude was 82.5 MPa. Fatigue results also showed that the Levenberg-Marquardt was a good method to find the materials' constants, as the maximum and average relative errors were 10.28 % and 2.78 %, respectively. The fatigue fracture surfaces of pre-corroded specimens indicated the brittle fracture. The Basquin model was used for fatigue lifetime prediction. A new model was proposed with a new parameter, initial virtual crack size, to relate the immersion time to the fatigue lifetime using the Paris equation. The fatigue lifetime of 1–3-h pre-corroded AZ31 magnesium alloy was estimated by the new model with acceptable relative errors.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100254"},"PeriodicalIF":0.0,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000896/pdfft?md5=6ca40c7e211b2fa2c63b790e97e4220f&pid=1-s2.0-S2666359723000896-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139108909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical frequency-domain solution for Euler-Bernoulli frames with semi-rigid connections 具有半刚性连接的欧拉-伯努利框架的频域解析解
Forces in mechanics Pub Date : 2023-12-25 DOI: 10.1016/j.finmec.2023.100252
Jorge Eliecer Ballesteros Ortega , Cristian Posso , Juan Camilo Molina-Villegas
{"title":"Analytical frequency-domain solution for Euler-Bernoulli frames with semi-rigid connections","authors":"Jorge Eliecer Ballesteros Ortega ,&nbsp;Cristian Posso ,&nbsp;Juan Camilo Molina-Villegas","doi":"10.1016/j.finmec.2023.100252","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100252","url":null,"abstract":"<div><p>This paper presents a novel method for analyzing the dynamic response of plane Euler-Bernoulli frames with semi-rigid connections subjected to arbitrary external loads and bending moments. The proposed solution methodology is the Green’s Functions Stiffness Method (GFSM) in the frequency domain. The GFSM is a mesh reduction method closely related with the Finite Element Method (FEM) sharing with it key components such as shape functions, fixed end forces, and stiffness matrices. By capitalizing on the strengths of both FEM and Green’s Functions, the GFSM facilitates the derivation of closed-form solutions for structural analysis. The formulation is initially established in the frequency domain and is later transformed into the time domain using the fast Fourier transform algorithm. To illustrate the applicability of the method, an example involving a one-bay, one-storey plane frame with semi-rigid connections is presented.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100252"},"PeriodicalIF":0.0,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000872/pdfft?md5=2665a2e1f3653003ab127d5f6b143a39&pid=1-s2.0-S2666359723000872-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139090128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Failure analysis of a bottom hole motor attached to a coiled tubing 盘绕油管底孔马达的故障分析
Forces in mechanics Pub Date : 2023-12-20 DOI: 10.1016/j.finmec.2023.100250
A. Albiter, Lucila Cruz-Castro, A. Contreras
{"title":"Failure analysis of a bottom hole motor attached to a coiled tubing","authors":"A. Albiter,&nbsp;Lucila Cruz-Castro,&nbsp;A. Contreras","doi":"10.1016/j.finmec.2023.100250","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100250","url":null,"abstract":"<div><p>During well operations in Mexico, a weight loss incident occurred, accompanied by the detachment of a section of the Bottom Hole Motor (BHM) connected to coiled wellbore tubing. To investigate the cause of the BHM rupture, a comprehensive analysis was conducted, including chemical analysis, metallurgical examination, thickness measurements, hardness, tension, and impact tests, as well as Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS). The results indicated brittle failure, potentially initiated by excessive torque, with evidence of plastic deformation and fatigue. The failure was attributed to weight forces overcoming well-related resistances, generating flexion stresses in the BHM body. Mechanical damages, including scratch marks, and localized deformation areas, indicated that the material is brittle, which is observed in the low elongation values (6 %) and energy impact exhibited. Microscopic analysis revealed predominantly brittle characteristics of the surface fracture. The failure of the BHM occur during attempts to unclog CT due to the material exhibiting low elongation and impact energy, suggesting that the material experienced deformation hardening, and fatigue before reaching failure. Additionally, scratches and excessive torque contributed to the material failing prematurely.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100250"},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000859/pdfft?md5=dceb1fe1b8dd8edc697de2f09be43699&pid=1-s2.0-S2666359723000859-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139033384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the blast resistance of sandwich structures by tailoring honeycomb core through varying cell size and vertex-derivative approach 通过改变单元尺寸和顶点衍生法定制蜂窝芯材,提高夹层结构的抗爆性能
Forces in mechanics Pub Date : 2023-12-01 DOI: 10.1016/j.finmec.2023.100247
M. Nalla Mohamed
{"title":"Improving the blast resistance of sandwich structures by tailoring honeycomb core through varying cell size and vertex-derivative approach","authors":"M. Nalla Mohamed","doi":"10.1016/j.finmec.2023.100247","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100247","url":null,"abstract":"<div><p>Honeycomb sandwich panels (HSPs) with efficient core design have the potential to enhance blast resistance to tackle increasing blast threats by terrorist attacks. In this work, an innovative vertex-derived approach is introduced to enhance the blast resistance of HSPs. First, a quarter model of regular quadrilateral core HSP structures (RQH) with a cell size of 30.5 mm (10 × 10) was simulated with various amounts of TNT charges(1,2,&amp;3 kg) kept at a height of 100 mm using the CONWEP algorithm available in ABAQUS/Explicit. The results obtained through simulation were validated with the tested results available in the literature. The study was extended by varying the cell sizes of 61 mm (5 × 5), 15.25 mm (20 × 20), and 7.625 mm (40 × 40) for comparison purposes. Further, honeycomb cores were tailored with the vertex-derived approach to enhance the blast resistance characteristics of RQH structures. The explosion resistance was assessed in terms of the deformation of the face sheets and dissipated energy through plastic deformation (PDE) of the face sheets and core. The result proved that the cell size variation and vertex-derived hierarchical core improved the blast resistance and the energy dissipation capacity of the RQH. The obtained results demonstrated that RQH with a 15.25 mm cell size (20 × 20) was found to have a good blast resistance at low and high-intensity blasts compared to other core sizes. The results also proved that the vertex-derived hierarchical topology enhanced the blast resistance of RQH under the same geometric parameters. The results demonstrate that employing vertex-derived hierarchical topology can enhance the blast resistance of HSPs.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100247"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000823/pdfft?md5=36b53f1fcd4fab97c7d919c7ffda5429&pid=1-s2.0-S2666359723000823-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138549874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hyperbolic theory for the analysis of laminated shallow shells with double curvature 双曲率层合浅壳分析的双曲理论
Forces in mechanics Pub Date : 2023-11-14 DOI: 10.1016/j.finmec.2023.100246
Anuja S. Jape, Atteshamuddin S. Sayyad
{"title":"A hyperbolic theory for the analysis of laminated shallow shells with double curvature","authors":"Anuja S. Jape,&nbsp;Atteshamuddin S. Sayyad","doi":"10.1016/j.finmec.2023.100246","DOIUrl":"10.1016/j.finmec.2023.100246","url":null,"abstract":"<div><p>In this paper, higher-order closed-form analytical solutions to the static bending and free vibration problems of laminated composite shells with double curvature are obtained using a hyperbolic shear deformation theory. The current theory is a modification of the shape function provided by Soldatos <span>[30]</span> in his well-known hyperbolic theory. The distributions of transverse shear stresses through the thickness of the shell are precisely predicted by the current theory satisfying traction free boundary conditions at the top and the bottom surfaces of the shell. Hamilton's principle serves as the foundation for the development of equations of motion. Navier's method is used for the analysis of simply-supported laminated shells under static and free vibration conditions. Displacements, stresses, and natural frequencies are presented for different shells with double curvature. The results from past investigations are compared to verify the accuracy and efficacy of the present hyperbolic shell theory.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100246"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000811/pdfft?md5=4227d8063760cd4185c82c9e8f62c9ac&pid=1-s2.0-S2666359723000811-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135765796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信