Forces in mechanics最新文献

筛选
英文 中文
Analytical frequency-domain solution for Euler-Bernoulli frames with semi-rigid connections 具有半刚性连接的欧拉-伯努利框架的频域解析解
Forces in mechanics Pub Date : 2023-12-25 DOI: 10.1016/j.finmec.2023.100252
Jorge Eliecer Ballesteros Ortega , Cristian Posso , Juan Camilo Molina-Villegas
{"title":"Analytical frequency-domain solution for Euler-Bernoulli frames with semi-rigid connections","authors":"Jorge Eliecer Ballesteros Ortega ,&nbsp;Cristian Posso ,&nbsp;Juan Camilo Molina-Villegas","doi":"10.1016/j.finmec.2023.100252","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100252","url":null,"abstract":"<div><p>This paper presents a novel method for analyzing the dynamic response of plane Euler-Bernoulli frames with semi-rigid connections subjected to arbitrary external loads and bending moments. The proposed solution methodology is the Green’s Functions Stiffness Method (GFSM) in the frequency domain. The GFSM is a mesh reduction method closely related with the Finite Element Method (FEM) sharing with it key components such as shape functions, fixed end forces, and stiffness matrices. By capitalizing on the strengths of both FEM and Green’s Functions, the GFSM facilitates the derivation of closed-form solutions for structural analysis. The formulation is initially established in the frequency domain and is later transformed into the time domain using the fast Fourier transform algorithm. To illustrate the applicability of the method, an example involving a one-bay, one-storey plane frame with semi-rigid connections is presented.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100252"},"PeriodicalIF":0.0,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000872/pdfft?md5=2665a2e1f3653003ab127d5f6b143a39&pid=1-s2.0-S2666359723000872-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139090128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Failure analysis of a bottom hole motor attached to a coiled tubing 盘绕油管底孔马达的故障分析
Forces in mechanics Pub Date : 2023-12-20 DOI: 10.1016/j.finmec.2023.100250
A. Albiter, Lucila Cruz-Castro, A. Contreras
{"title":"Failure analysis of a bottom hole motor attached to a coiled tubing","authors":"A. Albiter,&nbsp;Lucila Cruz-Castro,&nbsp;A. Contreras","doi":"10.1016/j.finmec.2023.100250","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100250","url":null,"abstract":"<div><p>During well operations in Mexico, a weight loss incident occurred, accompanied by the detachment of a section of the Bottom Hole Motor (BHM) connected to coiled wellbore tubing. To investigate the cause of the BHM rupture, a comprehensive analysis was conducted, including chemical analysis, metallurgical examination, thickness measurements, hardness, tension, and impact tests, as well as Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS). The results indicated brittle failure, potentially initiated by excessive torque, with evidence of plastic deformation and fatigue. The failure was attributed to weight forces overcoming well-related resistances, generating flexion stresses in the BHM body. Mechanical damages, including scratch marks, and localized deformation areas, indicated that the material is brittle, which is observed in the low elongation values (6 %) and energy impact exhibited. Microscopic analysis revealed predominantly brittle characteristics of the surface fracture. The failure of the BHM occur during attempts to unclog CT due to the material exhibiting low elongation and impact energy, suggesting that the material experienced deformation hardening, and fatigue before reaching failure. Additionally, scratches and excessive torque contributed to the material failing prematurely.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"14 ","pages":"Article 100250"},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000859/pdfft?md5=dceb1fe1b8dd8edc697de2f09be43699&pid=1-s2.0-S2666359723000859-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139033384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the blast resistance of sandwich structures by tailoring honeycomb core through varying cell size and vertex-derivative approach 通过改变单元尺寸和顶点衍生法定制蜂窝芯材,提高夹层结构的抗爆性能
Forces in mechanics Pub Date : 2023-12-01 DOI: 10.1016/j.finmec.2023.100247
M. Nalla Mohamed
{"title":"Improving the blast resistance of sandwich structures by tailoring honeycomb core through varying cell size and vertex-derivative approach","authors":"M. Nalla Mohamed","doi":"10.1016/j.finmec.2023.100247","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100247","url":null,"abstract":"<div><p>Honeycomb sandwich panels (HSPs) with efficient core design have the potential to enhance blast resistance to tackle increasing blast threats by terrorist attacks. In this work, an innovative vertex-derived approach is introduced to enhance the blast resistance of HSPs. First, a quarter model of regular quadrilateral core HSP structures (RQH) with a cell size of 30.5 mm (10 × 10) was simulated with various amounts of TNT charges(1,2,&amp;3 kg) kept at a height of 100 mm using the CONWEP algorithm available in ABAQUS/Explicit. The results obtained through simulation were validated with the tested results available in the literature. The study was extended by varying the cell sizes of 61 mm (5 × 5), 15.25 mm (20 × 20), and 7.625 mm (40 × 40) for comparison purposes. Further, honeycomb cores were tailored with the vertex-derived approach to enhance the blast resistance characteristics of RQH structures. The explosion resistance was assessed in terms of the deformation of the face sheets and dissipated energy through plastic deformation (PDE) of the face sheets and core. The result proved that the cell size variation and vertex-derived hierarchical core improved the blast resistance and the energy dissipation capacity of the RQH. The obtained results demonstrated that RQH with a 15.25 mm cell size (20 × 20) was found to have a good blast resistance at low and high-intensity blasts compared to other core sizes. The results also proved that the vertex-derived hierarchical topology enhanced the blast resistance of RQH under the same geometric parameters. The results demonstrate that employing vertex-derived hierarchical topology can enhance the blast resistance of HSPs.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100247"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000823/pdfft?md5=36b53f1fcd4fab97c7d919c7ffda5429&pid=1-s2.0-S2666359723000823-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138549874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hyperbolic theory for the analysis of laminated shallow shells with double curvature 双曲率层合浅壳分析的双曲理论
Forces in mechanics Pub Date : 2023-11-14 DOI: 10.1016/j.finmec.2023.100246
Anuja S. Jape, Atteshamuddin S. Sayyad
{"title":"A hyperbolic theory for the analysis of laminated shallow shells with double curvature","authors":"Anuja S. Jape,&nbsp;Atteshamuddin S. Sayyad","doi":"10.1016/j.finmec.2023.100246","DOIUrl":"10.1016/j.finmec.2023.100246","url":null,"abstract":"<div><p>In this paper, higher-order closed-form analytical solutions to the static bending and free vibration problems of laminated composite shells with double curvature are obtained using a hyperbolic shear deformation theory. The current theory is a modification of the shape function provided by Soldatos <span>[30]</span> in his well-known hyperbolic theory. The distributions of transverse shear stresses through the thickness of the shell are precisely predicted by the current theory satisfying traction free boundary conditions at the top and the bottom surfaces of the shell. Hamilton's principle serves as the foundation for the development of equations of motion. Navier's method is used for the analysis of simply-supported laminated shells under static and free vibration conditions. Displacements, stresses, and natural frequencies are presented for different shells with double curvature. The results from past investigations are compared to verify the accuracy and efficacy of the present hyperbolic shell theory.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100246"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000811/pdfft?md5=4227d8063760cd4185c82c9e8f62c9ac&pid=1-s2.0-S2666359723000811-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135765796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D digital image correlation analysis of medium velocity soft impacts on laminated composite 层合复合材料中速软冲击的三维数字图像相关分析
Forces in mechanics Pub Date : 2023-11-08 DOI: 10.1016/j.finmec.2023.100245
O. Dorival , P. Navarro , S. Marguet , J.-F. Ferrero
{"title":"3D digital image correlation analysis of medium velocity soft impacts on laminated composite","authors":"O. Dorival ,&nbsp;P. Navarro ,&nbsp;S. Marguet ,&nbsp;J.-F. Ferrero","doi":"10.1016/j.finmec.2023.100245","DOIUrl":"10.1016/j.finmec.2023.100245","url":null,"abstract":"<div><p>In aerospace acamedic and industrial world, soft impacts are commonly used to replace bird strike tests for the validation of materials and structures as well as the calibration of numerical models. However in general, the analysis reported show only a few part of the experimental information available. In this paper, three laminate composites made of epoxy resin reinforced by glass or carbon fibres are tested under gelatin impact at several velocities up to complete failure. A detailed analysis based on 3D Digital Image Correlation (3D DIC) and visual inspection of the three laminates is provided for a total of 21 tests with impact velocities in the range 60–112 m/s. DIC extraction provides accurate quantitative displacement fields of the rear face in both time and space. Moreover, specific failure scenarios are identified for each laminate. The results obtained provide a suitable database for the development of numerical models. In addition, all experimental data from DIC extractions are opened to the readers on the <em>Recherche Data Gouv</em> website for comparisons with their own tests or numerical models.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100245"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266635972300080X/pdfft?md5=b6956da3ac6c9a9fa266ffcbed4aba04&pid=1-s2.0-S266635972300080X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135514595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and analysis aspect of metal expansion bellows: A review 金属膨胀波纹管的设计与分析综述
Forces in mechanics Pub Date : 2023-11-04 DOI: 10.1016/j.finmec.2023.100244
S.D. Wankhede , S.H. Gawande
{"title":"Design and analysis aspect of metal expansion bellows: A review","authors":"S.D. Wankhede ,&nbsp;S.H. Gawande","doi":"10.1016/j.finmec.2023.100244","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100244","url":null,"abstract":"<div><p>Bellows are flexible structures and widely used in different industries to accommodate the internal pressure and deformations. This paper focuses an extensive review on analytical, numerical, and experimental approaches followed by various researchers with respect to the design aspects and applications of metal expansion bellows. The design aspect has been differentiated in three categories as mechanical design, thermal analysis, and forming process of bellows. While, the applications of bellows are categorized as automobile, piping systems, nuclear plant, and power generation units. In this paper, different stresses and deformations with internal and external boundary conditions are discussed. The effect of geometrical parameters on various design aspects will be the key attraction for leading researchers. It is found that various design aspects of bellows are related to deformation and stresses due to internal and external pressure, while a limited research work has been performed on the thermal study of bellows. This work will be useful for the bellows design for different applications.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100244"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000793/pdfft?md5=277352e5313070b0a6e9c875952b1d0c&pid=1-s2.0-S2666359723000793-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92046265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic amplification factor and interactions of a beam under compressive axial force and load travelling at varying velocity 梁在轴向压缩力和变速荷载作用下的动态放大系数和相互作用
Forces in mechanics Pub Date : 2023-10-15 DOI: 10.1016/j.finmec.2023.100241
Babatope Omolofe , Emmanuel O. Adara
{"title":"Dynamic amplification factor and interactions of a beam under compressive axial force and load travelling at varying velocity","authors":"Babatope Omolofe ,&nbsp;Emmanuel O. Adara","doi":"10.1016/j.finmec.2023.100241","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100241","url":null,"abstract":"<div><p>In this article, the deflection profile and response characteristic of axially prestressed continuous beam under the actions of load travelling at non-uniform velocity is explored. To achieve this, The governing equation is transformed using weighted residual method to obtain a set of coupled second-order Ordinary Differential Equations (ODEs) governing the amplitude factors of the beam-mass system. This set of ODEs is further simplified by applying a modified asymptotic method of Struble. Impulse response function is finally employed to obtain solutions representing the responses of this structural member to accelerating masses. Dynamic time history is carried out. Deformation and responses due to the stress in the structure are evaluated for different parameters. Dynamic effects of decelerating, accelerating and uniform velocity-type of motions on the dynamic amplification factor (DAF) and response characteristics are extensively studied for various vital structural parameters such as the beam span length, foundation stiffness, prestress, rotatory inertia correction factor, load position and velocity. The values of the amplification factors (DAF) against various pertinent parameters are presented in plotted curves for the pinned-pinned beam. It is found that, for accelerating, decelerating and constant velocity-type of motion, the value of the dynamic amplification factor increases as the values of axial force, foundation subgrade, and rotatory inertia factor increase. Various useful results in perfect agreement with existing studies are presented. It is further established that variations of the various structural parameters of interest significantly alter the response characteristics of the vibrating system.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100241"},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49755587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational modelling and analysis of hard tissue behavior around 0.5 mm and 0.85 mm platform switched abutment using 3D finite element analysis 利用三维有限元分析方法对0.5 mm和0.85 mm平台切换基台附近的硬组织行为进行了计算建模和分析
Forces in mechanics Pub Date : 2023-10-14 DOI: 10.1016/j.finmec.2023.100243
Mohammad Afazal , Saba Afreen , Arnab Chanda
{"title":"Computational modelling and analysis of hard tissue behavior around 0.5 mm and 0.85 mm platform switched abutment using 3D finite element analysis","authors":"Mohammad Afazal ,&nbsp;Saba Afreen ,&nbsp;Arnab Chanda","doi":"10.1016/j.finmec.2023.100243","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100243","url":null,"abstract":"<div><p>Permanent tooth avulsion is a common but extremely serious dental injury that can negatively affect both economic output and lifestyle. Even though it is not a disease, no one is ever completely safe from the possibility of suffering from these disastrous injuries. Dental implants play a vital role in the treatment of such injuries (tooth loss). This work was focused on to find the effects of two different platform switched abutment-implant assembly on hard tissues (Cortical and cancellous) bone. Materialized Mimics Medical Software was used for processing clinical imaging (CBCT) data of mandibular bone and micro-CT data of implant (5.5 × 9.5 mm), Abutments (Pt. sw. I and Pt. sw. II) and final 3D model of all parts were obtained by Fusion 360 CAD software and implanted into a right mandible bone block. Implant-Abutment with different switching assembly as platform switched-I (Pt. Sw. I) Ø5.5-mm implant and Ø3.8-mm abutment and the platform switched-II (Pt. Sw. II) Ø5.5-mm implant and Ø4.5-mm abutment were compared. Each model was subjected to 50 N, 100 N and 150 N longitudinal and lateral loads at occlusal surface of the abutment to evaluate the mechanical parameters. ANSYS 2020R1 was used to conduct the computational analysis. Mechanical characteristics such as von-Mises stresses and total deformation were measured in the hard tissues using finite element modelling. Under the application of different loads the cancellous bone experiences maximum von misses stress 4.7 MPa and 5.4 MPa for Pt. Sw. I and Pt. Sw. II respectively under longitudinal load and 7.4 MPa and 8.7 MPa for Pt. Sw. I and Pt. Sw. II respectively under lateral load. Similar trends were observed for cortical bone. While maximum total deformation of 2.1 µm (Pt. Sw. I) and 2.2 µm (Pt. Sw. II) under longitudinal load and 4.4 µm and 4.6 µm in cancellous bone and cortical bone under longitudinal load and 4.4 µm (Pt. Sw. I) and 4.6 µm (Pt. Sw. II) under lateral load in cancellous and 7.5 µm (Pt. Sw. I) and 8 µm (Pt. Sw. II) in cortical bone were recorded. The analysis may help to prevent the progression of marginal bone loss (MBL) because lower results for these variables indicated for higher platform switching in marginal bone. The findings of computational frameworks can help clinicians and other medical professionals make more informed decisions when selecting a treatment strategy from the many options available.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100243"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49752535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the undrained behaviour of granular clumps after isotropic and Ko-consolidation paths using DEM 利用DEM探索各向同性和ko固结路径后颗粒团块的不排水行为
Forces in mechanics Pub Date : 2023-10-09 DOI: 10.1016/j.finmec.2023.100242
Shiva Prashanth Kumar Kodicherla , Minyi Zhu , Guobin Gong , Stephen Wilkinson
{"title":"Exploring the undrained behaviour of granular clumps after isotropic and Ko-consolidation paths using DEM","authors":"Shiva Prashanth Kumar Kodicherla ,&nbsp;Minyi Zhu ,&nbsp;Guobin Gong ,&nbsp;Stephen Wilkinson","doi":"10.1016/j.finmec.2023.100242","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100242","url":null,"abstract":"<div><p>This paper investigates the undrained behaviour of granular clumps after isotropic and <em>K</em><sub>o</sub>-consolidation paths using a three-dimensional discrete element method (3D-DEM). Four randomly chosen clumped particles with a wide range of densification indexes, <em>I</em><sub>D</sub>, and mean confining stresses, <em>p</em>' were considered. The specimens were sheared to the deviatoric strain, <span><math><msub><mrow><mi>ε</mi></mrow><mi>q</mi></msub></math></span> of 40 % to reach the critical state (CS) conditions. It was found from the results that a unique critical state line (CSL) was achieved, irrespective of consolidation paths. The micro-mechanical quantities such as the average coordination number (CN) and von Mises fabric in terms of the second invariant of deviatoric fabric, <em>F</em><sub>vM</sub>, also reached CS values. Irrespective of the consolidation paths, unique relationships were found between <span><math><mrow><mi>e</mi><mo>−</mo><mi>log</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mo>′</mo></msup><mo>)</mo></mrow></math></span>and <span><math><mrow><mi>C</mi><mi>N</mi><mo>−</mo><mtext>log</mtext><mo>(</mo><msup><mi>p</mi><mo>′</mo></msup><mo>)</mo></mrow></math></span>. The stress-fabric joint invariant, <em>K</em><sub>F</sub> established a unique relationship with <span><math><msup><mrow><mi>p</mi></mrow><mo>′</mo></msup></math></span>and <em>e</em>, which forms a relationship in the <span><math><mrow><msub><mi>K</mi><mi>F</mi></msub><mo>−</mo><msup><mi>p</mi><mo>′</mo></msup><mo>−</mo><mi>e</mi></mrow></math></span> space and the projection of this relationship in the <span><math><mrow><mi>e</mi><mo>−</mo><mi>log</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mo>′</mo></msup><mo>)</mo></mrow></math></span> plane confirms the classical CSL. Moreover, the flow potential (<em>u</em><sub>F</sub>), stress ratio at instability (<span><math><msub><mi>η</mi><mrow><mi>I</mi><mi>S</mi></mrow></msub></math></span>), and average coordination number at instability (CN<sub><em>IS</em></sub>) showed no dependency on the consolidation paths, while a dependency was observed for the second-order deviator fabric, <em>F</em><sub>vM</sub>.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100242"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49752319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Configurational forces in a phase field model for the cyclic fatigue of heterogeneous materials 非均质材料循环疲劳相场模型中的构形力
Forces in mechanics Pub Date : 2023-10-06 DOI: 10.1016/j.finmec.2023.100239
Sikang Yan , Alexander Schlüter , Erik Faust , Ralf Müller
{"title":"Configurational forces in a phase field model for the cyclic fatigue of heterogeneous materials","authors":"Sikang Yan ,&nbsp;Alexander Schlüter ,&nbsp;Erik Faust ,&nbsp;Ralf Müller","doi":"10.1016/j.finmec.2023.100239","DOIUrl":"https://doi.org/10.1016/j.finmec.2023.100239","url":null,"abstract":"<div><p>The phase field model - a powerful tool - has been well established to simulate the fatigue crack evolution behavior. However, it is still hard to understand how each energy component in the phase field model contributes to crack evolution since the phase field method is based on an energetic criterion. In this work, we borrow the concept of configurational forces and show a straightforward way to examine the energetic driving forces in the phase field fatigue model. Results show that different parts of the configurational forces provide different energetic contributions during crack propagation.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"13 ","pages":"Article 100239"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49755577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信