Probabilistic fracture analysis of double edge cracked orthotropic laminated plates using the stochastic extended finite element method

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shailesh P. Palekar , Atteshamuddin S. Sayyad , Prasad M. Patare , Achchhe Lal
{"title":"Probabilistic fracture analysis of double edge cracked orthotropic laminated plates using the stochastic extended finite element method","authors":"Shailesh P. Palekar ,&nbsp;Atteshamuddin S. Sayyad ,&nbsp;Prasad M. Patare ,&nbsp;Achchhe Lal","doi":"10.1016/j.finmec.2024.100257","DOIUrl":null,"url":null,"abstract":"<div><p>The current computational investigation employs the stochastic extended finite element approach, which the authors have previously developed, to investigate the probabilistic fracture response of double edge cracked orthotropic laminated composite plates under varying stress conditions. The well-known extended finite element method is used to determine the mean and coefficient of variation of stress intensity factors KI and or KII by treating the input parameters as random variables. This is done under the assumption that all of the laminated plate's layers are perfectly bonded to one another and that there is no delamination effect between the layers, the matrix, or the fibres. And it's believed that the plate has through thickness crack. A combination of input random Gaussian variables is used to model the various input factors, such as the lamination angle, the applied loads, and the crack parameters (such the crack length and location). Typical numerical results are shown to investigate the effects of varying degrees of uncertainty in the lamination angle, crack length, crack length to plate width ratio, crack positions, and applied tensile, shear, and combined (tensile and shear) stresses. An excellent agreement arises when the findings generated with the stochastic extended finite element method methodology are assessed against the results found in the published literature through Monte Carlo simulations.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359724000039/pdfft?md5=32ffd990b3795f81bfb1b08f4738d2e0&pid=1-s2.0-S2666359724000039-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359724000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The current computational investigation employs the stochastic extended finite element approach, which the authors have previously developed, to investigate the probabilistic fracture response of double edge cracked orthotropic laminated composite plates under varying stress conditions. The well-known extended finite element method is used to determine the mean and coefficient of variation of stress intensity factors KI and or KII by treating the input parameters as random variables. This is done under the assumption that all of the laminated plate's layers are perfectly bonded to one another and that there is no delamination effect between the layers, the matrix, or the fibres. And it's believed that the plate has through thickness crack. A combination of input random Gaussian variables is used to model the various input factors, such as the lamination angle, the applied loads, and the crack parameters (such the crack length and location). Typical numerical results are shown to investigate the effects of varying degrees of uncertainty in the lamination angle, crack length, crack length to plate width ratio, crack positions, and applied tensile, shear, and combined (tensile and shear) stresses. An excellent agreement arises when the findings generated with the stochastic extended finite element method methodology are assessed against the results found in the published literature through Monte Carlo simulations.

使用随机扩展有限元法对双边缘开裂正交层压板进行概率断裂分析
当前的计算研究采用了作者之前开发的随机扩展有限元方法,以研究双边缘开裂正交层状复合板在不同应力条件下的概率断裂响应。通过将输入参数视为随机变量,使用著名的扩展有限元法确定应力强度因子 KI 和 KII 的平均值和变化系数。这种方法的假设前提是层压板的所有层之间都完全粘合,层、基体或纤维之间不存在分层效应。并且认为板材存在贯穿性裂缝。使用输入随机高斯变量组合来模拟各种输入因素,如层压角、外加载荷和裂纹参数(如裂纹长度和位置)。典型的数值结果显示了层压角、裂纹长度、裂纹长度与板宽比率、裂纹位置、施加的拉伸、剪切和组合(拉伸和剪切)应力的不同不确定程度的影响。通过蒙特卡罗模拟将随机扩展有限元方法得出的结果与已发表文献中的结果进行对比评估,结果非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信