盘绕油管底孔马达的故障分析

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Albiter, Lucila Cruz-Castro, A. Contreras
{"title":"盘绕油管底孔马达的故障分析","authors":"A. Albiter,&nbsp;Lucila Cruz-Castro,&nbsp;A. Contreras","doi":"10.1016/j.finmec.2023.100250","DOIUrl":null,"url":null,"abstract":"<div><p>During well operations in Mexico, a weight loss incident occurred, accompanied by the detachment of a section of the Bottom Hole Motor (BHM) connected to coiled wellbore tubing. To investigate the cause of the BHM rupture, a comprehensive analysis was conducted, including chemical analysis, metallurgical examination, thickness measurements, hardness, tension, and impact tests, as well as Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS). The results indicated brittle failure, potentially initiated by excessive torque, with evidence of plastic deformation and fatigue. The failure was attributed to weight forces overcoming well-related resistances, generating flexion stresses in the BHM body. Mechanical damages, including scratch marks, and localized deformation areas, indicated that the material is brittle, which is observed in the low elongation values (6 %) and energy impact exhibited. Microscopic analysis revealed predominantly brittle characteristics of the surface fracture. The failure of the BHM occur during attempts to unclog CT due to the material exhibiting low elongation and impact energy, suggesting that the material experienced deformation hardening, and fatigue before reaching failure. Additionally, scratches and excessive torque contributed to the material failing prematurely.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000859/pdfft?md5=dceb1fe1b8dd8edc697de2f09be43699&pid=1-s2.0-S2666359723000859-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Failure analysis of a bottom hole motor attached to a coiled tubing\",\"authors\":\"A. Albiter,&nbsp;Lucila Cruz-Castro,&nbsp;A. Contreras\",\"doi\":\"10.1016/j.finmec.2023.100250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During well operations in Mexico, a weight loss incident occurred, accompanied by the detachment of a section of the Bottom Hole Motor (BHM) connected to coiled wellbore tubing. To investigate the cause of the BHM rupture, a comprehensive analysis was conducted, including chemical analysis, metallurgical examination, thickness measurements, hardness, tension, and impact tests, as well as Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS). The results indicated brittle failure, potentially initiated by excessive torque, with evidence of plastic deformation and fatigue. The failure was attributed to weight forces overcoming well-related resistances, generating flexion stresses in the BHM body. Mechanical damages, including scratch marks, and localized deformation areas, indicated that the material is brittle, which is observed in the low elongation values (6 %) and energy impact exhibited. Microscopic analysis revealed predominantly brittle characteristics of the surface fracture. The failure of the BHM occur during attempts to unclog CT due to the material exhibiting low elongation and impact energy, suggesting that the material experienced deformation hardening, and fatigue before reaching failure. Additionally, scratches and excessive torque contributed to the material failing prematurely.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000859/pdfft?md5=dceb1fe1b8dd8edc697de2f09be43699&pid=1-s2.0-S2666359723000859-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在墨西哥的油井作业中,发生了一起失重事故,与盘绕的井筒油管相连的一段井底马达(BHM)脱落。为调查 BHM 破裂的原因,进行了全面分析,包括化学分析、金相检验、厚度测量、硬度、拉力和冲击测试,以及扫描电子显微镜 (SEM) 和能量色散光谱分析 (EDS)。结果表明,脆性失效可能是由过大的扭矩引起的,并有塑性变形和疲劳的迹象。失效的原因是重量力克服了相关的阻力,在 BHM 主体中产生了弯曲应力。包括划痕和局部变形区在内的机械损伤表明,材料是脆性的,这可以从低伸长值(6%)和能量冲击中观察到。显微分析表明,表面断裂主要具有脆性特征。由于材料表现出较低的伸长率和冲击能量,BHM 在尝试疏通 CT 时发生了失效,这表明材料在失效前经历了变形硬化和疲劳。此外,划痕和过大的扭矩也是导致材料过早失效的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Failure analysis of a bottom hole motor attached to a coiled tubing

During well operations in Mexico, a weight loss incident occurred, accompanied by the detachment of a section of the Bottom Hole Motor (BHM) connected to coiled wellbore tubing. To investigate the cause of the BHM rupture, a comprehensive analysis was conducted, including chemical analysis, metallurgical examination, thickness measurements, hardness, tension, and impact tests, as well as Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS). The results indicated brittle failure, potentially initiated by excessive torque, with evidence of plastic deformation and fatigue. The failure was attributed to weight forces overcoming well-related resistances, generating flexion stresses in the BHM body. Mechanical damages, including scratch marks, and localized deformation areas, indicated that the material is brittle, which is observed in the low elongation values (6 %) and energy impact exhibited. Microscopic analysis revealed predominantly brittle characteristics of the surface fracture. The failure of the BHM occur during attempts to unclog CT due to the material exhibiting low elongation and impact energy, suggesting that the material experienced deformation hardening, and fatigue before reaching failure. Additionally, scratches and excessive torque contributed to the material failing prematurely.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信