具有半刚性连接的欧拉-伯努利框架的频域解析解

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jorge Eliecer Ballesteros Ortega , Cristian Posso , Juan Camilo Molina-Villegas
{"title":"具有半刚性连接的欧拉-伯努利框架的频域解析解","authors":"Jorge Eliecer Ballesteros Ortega ,&nbsp;Cristian Posso ,&nbsp;Juan Camilo Molina-Villegas","doi":"10.1016/j.finmec.2023.100252","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel method for analyzing the dynamic response of plane Euler-Bernoulli frames with semi-rigid connections subjected to arbitrary external loads and bending moments. The proposed solution methodology is the Green’s Functions Stiffness Method (GFSM) in the frequency domain. The GFSM is a mesh reduction method closely related with the Finite Element Method (FEM) sharing with it key components such as shape functions, fixed end forces, and stiffness matrices. By capitalizing on the strengths of both FEM and Green’s Functions, the GFSM facilitates the derivation of closed-form solutions for structural analysis. The formulation is initially established in the frequency domain and is later transformed into the time domain using the fast Fourier transform algorithm. To illustrate the applicability of the method, an example involving a one-bay, one-storey plane frame with semi-rigid connections is presented.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666359723000872/pdfft?md5=2665a2e1f3653003ab127d5f6b143a39&pid=1-s2.0-S2666359723000872-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analytical frequency-domain solution for Euler-Bernoulli frames with semi-rigid connections\",\"authors\":\"Jorge Eliecer Ballesteros Ortega ,&nbsp;Cristian Posso ,&nbsp;Juan Camilo Molina-Villegas\",\"doi\":\"10.1016/j.finmec.2023.100252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel method for analyzing the dynamic response of plane Euler-Bernoulli frames with semi-rigid connections subjected to arbitrary external loads and bending moments. The proposed solution methodology is the Green’s Functions Stiffness Method (GFSM) in the frequency domain. The GFSM is a mesh reduction method closely related with the Finite Element Method (FEM) sharing with it key components such as shape functions, fixed end forces, and stiffness matrices. By capitalizing on the strengths of both FEM and Green’s Functions, the GFSM facilitates the derivation of closed-form solutions for structural analysis. The formulation is initially established in the frequency domain and is later transformed into the time domain using the fast Fourier transform algorithm. To illustrate the applicability of the method, an example involving a one-bay, one-storey plane frame with semi-rigid connections is presented.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000872/pdfft?md5=2665a2e1f3653003ab127d5f6b143a39&pid=1-s2.0-S2666359723000872-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新方法,用于分析带有半刚性连接的平面欧拉-伯努利框架在任意外部荷载和弯矩作用下的动态响应。提出的求解方法是频域格林函数刚度法(GFSM)。格林函数刚度法是一种网格缩减方法,与有限元法(FEM)密切相关,共享形状函数、固定端力和刚度矩阵等关键组件。通过利用有限元法和格林函数的优势,全球网格法有助于推导结构分析的闭式解。该公式最初建立在频域,随后使用快速傅立叶变换算法转换到时域。为了说明该方法的适用性,我们以一个具有半刚性连接的单榀单层平面框架为例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical frequency-domain solution for Euler-Bernoulli frames with semi-rigid connections

This paper presents a novel method for analyzing the dynamic response of plane Euler-Bernoulli frames with semi-rigid connections subjected to arbitrary external loads and bending moments. The proposed solution methodology is the Green’s Functions Stiffness Method (GFSM) in the frequency domain. The GFSM is a mesh reduction method closely related with the Finite Element Method (FEM) sharing with it key components such as shape functions, fixed end forces, and stiffness matrices. By capitalizing on the strengths of both FEM and Green’s Functions, the GFSM facilitates the derivation of closed-form solutions for structural analysis. The formulation is initially established in the frequency domain and is later transformed into the time domain using the fast Fourier transform algorithm. To illustrate the applicability of the method, an example involving a one-bay, one-storey plane frame with semi-rigid connections is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信