BioEssays最新文献

筛选
英文 中文
Biochemical communication between filament-forming enzymes 丝状形成酶之间的生化交流:代谢物在与 CTP 合成酶共同组装的酶中的潜在调节作用。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-07-08 DOI: 10.1002/bies.202400063
Stephen L. Bearne
{"title":"Biochemical communication between filament-forming enzymes","authors":"Stephen L. Bearne","doi":"10.1002/bies.202400063","DOIUrl":"10.1002/bies.202400063","url":null,"abstract":"<p>A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5′-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5′-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5′-triphosphate (GTP); and ∆<sup>1</sup>-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments – potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting protein condensation in cGAS-STING signaling pathway 以 cGAS-STING 信号通路中的蛋白质缩聚为靶点。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-07-04 DOI: 10.1002/bies.202400091
Yajie Li, Dongbo Zhao, Dahua Chen, Qinmiao Sun
{"title":"Targeting protein condensation in cGAS-STING signaling pathway","authors":"Yajie Li,&nbsp;Dongbo Zhao,&nbsp;Dahua Chen,&nbsp;Qinmiao Sun","doi":"10.1002/bies.202400091","DOIUrl":"10.1002/bies.202400091","url":null,"abstract":"<p>The cGAS-STING signaling pathway plays a pivotal role in sensing cytosolic DNA and initiating innate immune responses against various threats, with disruptions in this pathway being associated with numerous immune-related disorders. Therefore, precise regulation of the cGAS-STING signaling is crucial to ensure appropriate immune responses. Recent research, including ours, underscores the importance of protein condensation in driving the activation and maintenance of innate immune signaling within the cGAS-STING pathway. Consequently, targeting condensation processes in this pathway presents a promising approach for modulating the cGAS-STING signaling and potentially managing associated disorders. In this review, we provide an overview of recent studies elucidating the role and regulatory mechanism of protein condensation in the cGAS-STING signaling pathway while emphasizing its pathological implications. Additionally, we explore the potential of understanding and manipulating condensation dynamics to develop novel strategies for mitigating cGAS-STING-related disorders in the future.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic channeling of lipids via the contact zones between different organelles 脂质通过不同细胞器之间的接触区进行代谢。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-06-27 DOI: 10.1002/bies.202400045
Kentaro Hanada
{"title":"Metabolic channeling of lipids via the contact zones between different organelles","authors":"Kentaro Hanada","doi":"10.1002/bies.202400045","DOIUrl":"10.1002/bies.202400045","url":null,"abstract":"<p>Various lipid transfer proteins (LTPs) mediate the inter-organelle transport of lipids. By working at membrane contact zones between donor and acceptor organelles, LTPs achieve rapid and accurate inter-organelle transfer of lipids. This article will describe the emerging paradigm that the action of LTPs at organelle contact zones generates metabolic channeling events in lipid metabolism, mainly referring to how ceramide synthesized in the endoplasmic reticulum is preferentially metabolized to sphingomyelin in the distal Golgi region, how cholesterol and phospholipids receive specific metabolic reactions in mitochondria, and how the hijacking of host LTPs by intracellular pathogens may generate new channeling-like events. In addition, the article will discuss how the function of LTPs is regulated, exemplified by a few representative LTP systems, and will briefly touch on experiments that will be necessary to establish the paradigm that LTP-mediated inter-organelle transport of lipids is one of the mechanisms of compartmentalization-based metabolic channeling events.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The concept of balance in microbiome research 微生物组研究中的平衡概念。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-06-26 DOI: 10.1002/bies.202400050
Maureen A. O'Malley
{"title":"The concept of balance in microbiome research","authors":"Maureen A. O'Malley","doi":"10.1002/bies.202400050","DOIUrl":"10.1002/bies.202400050","url":null,"abstract":"<p>Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving. These include how microbiome causality is understood, and how to conceptualize the role microbiomes have in the health status of their hosts and other ecosystems. A key concept that crops up in the medical microbiome literature is “balance.” A balanced microbiome is thought to produce health and an imbalanced one disease. Based on a quantitative and qualitative analysis of how balance is used in the microbiome literature, this “think again” essay critically analyses each of the several subconceptions of balance. As well as identifying problems with these uses, the essay suggests some starting points for filling this conceptual gap in microbiome research.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic modulation of enhancer-promoter and promoter-promoter connectivity in gene regulation 基因调控中增强子-启动子和启动子-启动子连接的动态调控。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-06-25 DOI: 10.1002/bies.202400101
Shiho Makino, Takashi Fukaya
{"title":"Dynamic modulation of enhancer-promoter and promoter-promoter connectivity in gene regulation","authors":"Shiho Makino,&nbsp;Takashi Fukaya","doi":"10.1002/bies.202400101","DOIUrl":"10.1002/bies.202400101","url":null,"abstract":"<p>Enhancers are short segments of regulatory DNA that control when and in which cell-type genes should be turned on in response to a variety of extrinsic and intrinsic signals. At the molecular level, enhancers serve as a genomic scaffold that recruits sequence-specific transcription factors and co-activators to facilitate transcription from linked promoters. However, it remains largely unclear how enhancers communicate with appropriate target promoters in the context of higher-order genome topology. In this review, we discuss recent progress in our understanding of the functional interplay between enhancers, genome topology, and the molecular properties of transcription machineries in gene regulation. We suggest that the activities of transcription hubs are highly regulated through the dynamic rearrangement of enhancer-promoter and promoter-promoter connectivity during animal development.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: BioEssays 7/2024 发行信息:生物论文 7/2024
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-06-25 DOI: 10.1002/bies.202470011
{"title":"Issue Information: BioEssays 7/2024","authors":"","doi":"10.1002/bies.202470011","DOIUrl":"https://doi.org/10.1002/bies.202470011","url":null,"abstract":"","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202470011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
iPS cell therapy 2.0: Preparing for next-generation regenerative medicine. iPS 细胞疗法 2.0:为下一代再生医学做准备。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-06-25 DOI: 10.1002/bies.202400072
Kelvin K Hui, Shinya Yamanaka
{"title":"iPS cell therapy 2.0: Preparing for next-generation regenerative medicine.","authors":"Kelvin K Hui, Shinya Yamanaka","doi":"10.1002/bies.202400072","DOIUrl":"https://doi.org/10.1002/bies.202400072","url":null,"abstract":"<p><p>This year marks the tenth anniversary of the world's first transplantation of tissue generated from induced pluripotent stem cells (iPSCs). There is now a growing number of clinical trials worldwide examining the efficacy and safety of autologous and allogeneic iPSC-derived products for treating various pathologic conditions. As we patiently wait for the results from these and future clinical trials, it is imperative to strategize for the next generation of iPSC-based therapies. This review examines the lessons learned from the development of another advanced cell therapy, chimeric antigen receptor (CAR) T cells, and the possibility of incorporating various new bioengineering technologies in development, from RNA engineering to tissue fabrication, to apply iPSCs not only as a means to achieve personalized medicine but also as designer medical applications.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity 平衡行为:BRCA2 通过控制 G-四叉动态精心管理端粒复制。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-06-24 DOI: 10.1002/bies.202300229
So Young Joo, Keewon Sung, Hyunsook Lee
{"title":"Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity","authors":"So Young Joo,&nbsp;Keewon Sung,&nbsp;Hyunsook Lee","doi":"10.1002/bies.202300229","DOIUrl":"10.1002/bies.202300229","url":null,"abstract":"<p>In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202300229","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cited2 is a key regulator of placental development and plasticity Cited2 是胎盘发育和可塑性的关键调节因子。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-06-24 DOI: 10.1002/bies.202300118
Marija Kuna, Michael J. Soares
{"title":"Cited2 is a key regulator of placental development and plasticity","authors":"Marija Kuna,&nbsp;Michael J. Soares","doi":"10.1002/bies.202300118","DOIUrl":"10.1002/bies.202300118","url":null,"abstract":"<p>The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysical aspects of migrasome organelle formation and their diverse cellular functions 迁移体细胞器形成的生物物理方面及其多种细胞功能。
IF 3.2 3区 生物学
BioEssays Pub Date : 2024-06-23 DOI: 10.1002/bies.202400051
Raviv Dharan, Raya Sorkin
{"title":"Biophysical aspects of migrasome organelle formation and their diverse cellular functions","authors":"Raviv Dharan,&nbsp;Raya Sorkin","doi":"10.1002/bies.202400051","DOIUrl":"10.1002/bies.202400051","url":null,"abstract":"<p>The transient cellular organelles known as migrasomes, which form during cell migration along retraction fibers, have emerged as a crutial factor in various fundamental cellular processes and pathologies. These membrane vesicles originate from local membrane swellings, encapsulate specific cytoplasmic content, and are eventually released to the extracellular environment or taken up by recipient cells. Migrasome biogenesis entails a sequential membrane remodeling process involving a complex interplay between various molecular factors such as tetraspanin proteins, and mechanical properties like membrane tension and bending rigidity. In this review, we summarize recent studies exploring the mechanism of migrasome formation. We emphasize how physical forces, together with molecular factors, shape migrasome biogenesis, and detail the involvement of migrasomes in various cellular processes and pathologies. A comprehensive understanding of the exact mechanism underlying migrasome formation and the identification of key molecules involved hold promise for advancing their therapeutic and diagnostic applications.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bies.202400051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信