{"title":"Studying the effect bio-based sensorns packaging based on magnetic fields extraction of phycocyanin on the shelf life of fish fillets infected with Staphylococcus aureus.","authors":"Bahareh Nowruzi, Mahshid Ghorbani, Maryam Ghane, Mahrokh Ashrafizadeh, Rojan Barandak, Melika Targholizadeh","doi":"10.1186/s12866-025-03975-9","DOIUrl":"https://doi.org/10.1186/s12866-025-03975-9","url":null,"abstract":"<p><p>Fish and seafood are highly perishable commodities, necessitating innovative packaging solutions to mitigate microbial spoilage and extend shelf life. This study developed a bioactive nanocomposite biosensor incorporating phycocyanin (PC) a pigment extracted from Neowestiellopsis persica and functionalized under 30 and 60 Millitesla (mT) magnetic fields (MF) coated with nanochitosan (NCT)- Sodium Alginate (SA). Reaults showed that MF exposure enhanced PC purity and concentration by 1.04- and 1.12-fold, respectively (p < 0.05), compared to non-MF controls. Agar disk diffusion assays revealed a 1.12-fold (30 mT) and 1.15-fold (60 mT) increase in antibacterial activity against Staphylococcus aureus. Films containing 2% PC (T4) extended shelf life by 8 days under refrigeration, reducing thiobarbituric acid (TBA) and total volatile nitrogen (TVN) levels to 18.85 ± 0.39 mg MDA/kg and < 30 mg/100 g, respectively, over 15 days. Furthermore, T4 significantly suppressed microbial proliferation relative to lower-concentration treatments and controls (p < 0.05). These results demonstrate that MF-enhanced, 2% PC nanocomposites provide a sustainable, biodegradable solution for seafood preservation, effectively delaying spoilage and advancing innovative packaging technologies.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"263"},"PeriodicalIF":4.0,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143980773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lung-directed delivery of a ligand-mediated chimeric lysin has an enhanced ability to eradicate pulmonary and intracellular Staphylococcus aureus.","authors":"Xiaoxu Zhang, Dongyan Xiong, Xiaohong Li, Heng Xue, Min Chen, Junping Yu, Hongping Wei","doi":"10.1186/s12866-025-03978-6","DOIUrl":"https://doi.org/10.1186/s12866-025-03978-6","url":null,"abstract":"<p><strong>Background: </strong>Bacteriophage lysins have high antimicrobial activities with many advantages as alternatives to antibiotics, however, lysins generally do not exhibit intracellular bactericidal capabilities due to a lack of cell-penetrating properties and/or reduced activity under the intracellular environment. To address this problem, p-ClyC, an engineered chimeric lysin with a lung cell-targeting peptide, was used to kill Staphylococcus aureus (S. aureus) in vitro and in vivo.</p><p><strong>Methods: </strong>p-ClyC was constructed by fusing ClyC with a lung-directed peptide. Antimicrobial activities of the two lysins (ClyC, p-ClyC) against S. aureus were evaluated in vitro and in a murine lung infection model. The cell internalization of the lysins was explored using laser confocal imaging. The intracellular bactericidal efficacies of the lysins and gentamicin were evaluated using intracellular growth inhibition studies. The risk of generating antimicrobial resistance after the lysin or antibiotics treatment was investigated by deep sequencing, MIC and growth rate monitoring.</p><p><strong>Results: </strong>The bactericidal activity against pulmonary intracellular S. aureus of p-ClyC was obviously promoted. The treatment with p-ClyC made the surviving intracellular bacteria generate less tendence to resistance in terms of growth rates and minor alleles in genomes than the treatment with gentamicin. In murine lung infection model, the survival rate for the group of p-ClyC was significantly improved, and more pulmonary bacteria were killed by the p-ClyC than those by the ClyC.</p><p><strong>Conclusions: </strong>The lung-directed peptide-fused ClyC (p-ClyC) is a novel and effective lysin to be against intracellular S. aureus and a potential antimicrobial agent for therapeutics against the pulmonary infections by S. aureus.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"262"},"PeriodicalIF":4.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143966015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC MicrobiologyPub Date : 2025-04-30DOI: 10.1186/s12866-025-03958-w
Frank Abimbola Ogundolie, Tolulope Peter Saliu, Michael Obinna Okpara, Jacqueline Manjia Njikam, Folasade Mayowa Olajuyigbe, Joshua Oluwafemi Ajele, Gattupalli Naresh Kumar
{"title":"In silico and structural analysis of Bacillus licheniformis FAO.CP7 pullulanase isolated from cocoa (Theobroma cacao L.) pod waste.","authors":"Frank Abimbola Ogundolie, Tolulope Peter Saliu, Michael Obinna Okpara, Jacqueline Manjia Njikam, Folasade Mayowa Olajuyigbe, Joshua Oluwafemi Ajele, Gattupalli Naresh Kumar","doi":"10.1186/s12866-025-03958-w","DOIUrl":"https://doi.org/10.1186/s12866-025-03958-w","url":null,"abstract":"<p><p>Pullulanase (EC 3.2.1.41) is an important debranching enzyme that plays a critical role in maximizing the abundant energy present in branched polysaccharides. Its unique ability to efficiently degrade branched polysaccharides makes it crucial in industries like biofuels, food, and pharmaceuticals. Therefore, discovering microbes that produce pullulanase and thrive in harsh industrial conditions holds significant potential for optimizing large-scale bioprocessing. This unique property has made pullulanase an important enzyme in the industry. Thus, the search for microbes that have the pullulanase production properties and capacity to withstand harsh industrial conditions will be of high industrial relevance. Therefore, this study aimed to amplify, sequence, and molecularly characterize the pullulanase gene encoding extracellular pullulanase in Bacillus licheniformis strain FAO.CP7 (Accession No: MN150530.1.) which was obtained from cocoa pods using several bioinformatics tools. The amplified PulA gene had a nucleotide sequence of 2247 base pairs encoding a full-length open reading frame (ORF) pullulanase protein of 748 amino-acids residues with molecular weight 82.39 kDa and theoretical isoelectric point of 6.47, respectively. The deduced pullulanase protein had an aliphatic index of 77.66. Using BLASTp, the deduced amino acid sequence of the pullulanase gene showed 85% homologies with those from B. licheniformis strains. Multiple sequence alignment of PulA protein sequence showed that it contains YNWGYNP motif which is also found in all type I pullulanase protein sequences analysed. The restriction mapping of the gene showed that it can be digested with several restriction enzymes. Further analysis revealed that the deduced protein had a hydrophobicity score of - 0.37 without a transmembrane helix. Overall, this study revealed the PulA gene of B. licheniformis strain FAO.CP7 obtained from cocoa pods and its deduced protein show significant potential for enhancing starch bioprocessing. With further optimization, it could offer substantial benefits to starch-based biotechnological industries.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"261"},"PeriodicalIF":4.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143962499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant development influences dynamic shifts in the root compartment microbiomes of wild and domesticated finger millet cultivars.","authors":"Fantaye Ayele Dadi, Saraladevi Muthusamy, Samrat Ghosh, Diriba Muleta, Kassahun Tesfaye, Fassil Assefa, Jie Xu, Farideh Ghadamgahi, Rodomiro Ortiz, Ramesh Raju Vetukuri","doi":"10.1186/s12866-025-03976-8","DOIUrl":"https://doi.org/10.1186/s12866-025-03976-8","url":null,"abstract":"<p><strong>Background: </strong>Plant-microbe interactions in the rhizosphere and endosphere are crucial for maintaining plant health and ecosystem dynamics. These interactions are shaped by several factors, including the plant's developmental stage, domestication, and specific root compartments. Different plant cultivars influence unique microbial communities by secreting root exudates that either support beneficial symbionts or inhibit pathogens. This study examined the microbial community structures in the endosphere and rhizosphere of wild-type finger millet and five domesticated cultivars at two developmental stages.</p><p><strong>Results: </strong>Our results revealed that the plant developmental stage, root compartment, and domestication significantly influence the root-associated microbiomes. Interestingly, only about 8% of the core microbiota was consistently shared between the soil and plants, indicating that 92% shifted dynamically depending on plant type and developmental stage. Pseudomonadota, Actinomycedota, and Bacteroidota were the dominant bacterial phyla, while Ascomycota and Basidiomycota were the primary fungal phyla across all samples, displaying distinct abundance patterns. Notably, an increase in Actinomycedota in the endosphere correlated with a reduction in Pseudomonadota. The most significant shifts in microbial community composition occurred in the rhizosphere during the flowering stage, primarily driven by the genus Pseudomonas. These findings demonstrate that plant developmental stages and domestication influence the recruitment of specific microbial taxa to meet the plant's needs, particularly in various root compartments. This selective recruitment highlights the active role of plants in shaping their microbiomes, providing insights into the potential for manipulating these communities to enhance crop productivity sustainably.</p><p><strong>Conclusion: </strong>Our results indicate that both the host developmental stage and domestication significantly influence the assembly and structure of the plant microbiome. Plant root compartments can selectively recruit specific taxa from associated core microbial communities to meet their needs, depending on the plant's developmental stage and the particular root compartment involved. These findings demonstrate that the deterministic selection pressures exerted by plants during their growth and development greatly affect their microbial communities. This has important implications for developing sustainable farming practices, reducing reliance on chemical fertilizers and pesticides, and enhancing future crop productivity.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"259"},"PeriodicalIF":4.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042305/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143976802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cold atmospheric plasma and skin wound healing: influence on microbial diversity and composition.","authors":"Ruidi Gao, Houyu He, Xingyu Yang, Wei Wang, Jing Gao, Chunjun Yang","doi":"10.1186/s12866-025-03965-x","DOIUrl":"https://doi.org/10.1186/s12866-025-03965-x","url":null,"abstract":"<p><strong>Background: </strong>Skin wound healing presents a complex challenge, often compounded by the risk of infection. Cold atmospheric plasma (CAP) emerged as a novel therapeutic for reducing bacterial load and expediting wound healing. However, its effect on the wound microbiome remained unclear. This study aimed to characterize the microbiome of different types of wounds and determine whether CAP influenced microbial diversity.</p><p><strong>Methods: </strong>Twenty-five patients (ten with acute, fifteen with chronic skin wounds) and ten healthy controls were enrolled. CAP was tailored to individual clinical conditions. Skin samples were collected before and after CAP, and microbiota composition was determined by 16 S ribosomal RNA sequencing.</p><p><strong>Results: </strong>Microbial communities differed between acute and chronic groups. CAP could accelerate wound healing. However, it did not change microbial α and β-diversity in acute wounds. In chronic wounds, α-diversity indices, including the chao and ACE, were significantly increased, and a significant clustering was observed in post-CAP group. In addition, CAP led to higher abundance of Staphylococcus, lower levels of Proteobacteria and Pseudomonas in chronic wounds.</p><p><strong>Conclusions: </strong>This study provided novel insights into the impact of CAP on skin wound microbiota. Further research was required to ascertain causality between microbiota and CAP and to develop personalized CAP treatment strategies.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"260"},"PeriodicalIF":4.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143980753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC MicrobiologyPub Date : 2025-04-29DOI: 10.1186/s12866-025-03991-9
Mohammad Hashemzadeh, Maryam Hasanvand, Effat Abbasi Montazeri
{"title":"Correction: Analysis of relative genes expression and mutation of pstB and efpA efflux pumps in Mycobacterium simiae isolates from suspected tuberculosis patients by using quantitative Real-time PCR.","authors":"Mohammad Hashemzadeh, Maryam Hasanvand, Effat Abbasi Montazeri","doi":"10.1186/s12866-025-03991-9","DOIUrl":"https://doi.org/10.1186/s12866-025-03991-9","url":null,"abstract":"","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"256"},"PeriodicalIF":4.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039008/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143966148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Klebsiella pneumoniae under xylose pressure: the growth adaptation, antimicrobial susceptibility, global proteomics analysis and role of XylA and XylB proteins.","authors":"Ruolan Yi, Jiaoyang Zheng, Zhichao Xu, Jiayan Wu, Fangfang Liu, Jinxin Zheng, Duoyun Li, Shiqing Han, Zhijian Yu","doi":"10.1186/s12866-025-03961-1","DOIUrl":"https://doi.org/10.1186/s12866-025-03961-1","url":null,"abstract":"<p><p>Klebsiella pneumoniae can be cultured in medium with xylose as the sole carbon source. However, the effect of xylose exposure on its growth adaptation, virulence, antimicrobial susceptibility, and proteomic response remain unclear. Here, we show that low concentrations of xylose (≤ 2%) promote the planktonic growth of three K. pneumoniae isolates (K2044, EKP19, and EKP108) in a concentration-dependent manner, while 8% xylose consistently inhibits their planktonic growth. Notably, the xylose-induced isolate K2044-8Xyl-60G, when exposed to various xylose concentrations, exhibited the longest logarithmic growth phase and the highest optical density (OD) after logarithmic growth, compared to K2044. In contrast, the xylose-induced isolates EKP19 and EKP108 did not successfully reshape growth adaptation under persistent xylose pressure compared to K2044. Additionally, while the growth adaptation of K2044-8Xyl-60G under xylose pressure was confirmed, no amino acid mutations were detected in the functional proteins of this xylose-induced isolate, suggesting that persistent xylose pressure does not cause nonsense mutations in the bacterial genome. Xylose exposure reduced the gentamicin minimum inhibitory concentration (MIC) in all three K. pneumoniae isolates (K2044, EKP108, and EKP19) and their xylose-induced derivatives. In a Galleria mellonella infection model, significantly decreased virulence was observed in the xylose-induced isolates of K2044 and EKP19. Proteomic analysis of K2044-8Xyl-60G treated with 8% xylose revealed upregulation of proteins involved in glycolysis, the pentose phosphate pathway, and transmembrane transport. We also constructed K2044-ΔxylA (with deletion of the xylA gene) and K2044-ΔxylB (with deletion of the xylB gene). Our data showed that K2044-ΔxylA exhibited enhanced planktonic growth compared to K2044 when exposed to xylose concentrations of ≥ 4%, while K2044-ΔxylB displayed significantly reduced growth capacity regardless of xylose exposure. The virulence of K2044-ΔxylA was also significantly reduced, as demonstrated by the increased survival rates in G. mellonella infection models. Additionally, xylose exposure strongly enhanced membrane depolarization in both K2044-ΔxylA and K2044-ΔxylB compared to the wild-type K2044. Proteomic analysis indicated that the deletion of xylA primarily affected functional proteins related to ribosomes, xylose transmembrane transporters and capsular polysaccharides, while the deletion of xylB impacted the expression of xylose metabolism-related proteins. In conclusion, xylose exposure can reshape the growth adaptation, virulence, and antimicrobial susceptibility of K. pneumoniae in an isolate-specific manner, with xylA playing a more critical role than xylB under high xylose concentrations.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"257"},"PeriodicalIF":4.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC MicrobiologyPub Date : 2025-04-29DOI: 10.1186/s12866-025-03985-7
Caiqing Yao, Yu Zhang, Lijun You, Jingjing E, Junguo Wang
{"title":"Comparative analysis of three experimental methods for revealing human fecal microbial diversity.","authors":"Caiqing Yao, Yu Zhang, Lijun You, Jingjing E, Junguo Wang","doi":"10.1186/s12866-025-03985-7","DOIUrl":"https://doi.org/10.1186/s12866-025-03985-7","url":null,"abstract":"<p><p>Due to the heterogeneity of the human gut environment, the gut microbiota is complex and diverse, and has been insufficiently explored. In this study, one fresh fecal sample was cultured using 12 commercial or modified media and incubation of culture plates anaerobically and aerobically, the conventional experienced colony picking (ECP) was first used to isolate the colonies and obtain pure culture strains. On this basis, all the colonies grown on the culture plates were collected for culture-enriched metagenomic sequencing (CEMS), and the original sample was also subjected to direct culture-independent metagenomic sequencing (CIMS), the study compared the effects of three methods for analyzing the microbiota contained in the sample. It was found that compared with CEMS, conventional ECP failed to detect a large proportion of strains grown in culture media, resulting in missed detection of culturable microorganisms in the gut. Microbes identified by CEMS and CIMS showed a low degree of overlap (18% of species), whereas species identified by CEMS and CIMS alone accounted for 36.5% and 45.5%, respectively. It suggests that both culture-dependent and culture-independent approaches are essential in revealing gut microbial diversity. Moreover, based on the CEMS results, growth rate index (GRiD) values for various strains on different media were calculated to predict the optimal medium for bacterial growth; this method can be used to design new media for intestinal microbial isolation, promote the recovery of specific microbiota, and obtain new insights into the human microbiome diversity. This is among the first studies on CEMS of the human gut microbiota.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"258"},"PeriodicalIF":4.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143964155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-vitro antimicrobial activity of new antimicrobial agents against Streptococcus pneumoniae and potential resistance mechanisms: a multicenter study.","authors":"Zichen Lei, Qi Liu, Yiqun Ma, Xinrui Yang, Hao Zu, Ziyao Li, Feilong Zhang, Dongya Pu, Yulin Zhang, Binghuai Lu","doi":"10.1186/s12866-025-03967-9","DOIUrl":"10.1186/s12866-025-03967-9","url":null,"abstract":"<p><strong>Background: </strong>Streptococcus pneumoniae is a major cause of invasive and non-invasive diseases, particularly in children and immunocompromised individuals, with an annual mortality of approximately 800,000 children worldwide. The rise of antibiotic-resistant strains complicates treatment, especially with increasing resistance to penicillin, macrolides, and fluoroquinolones. The study on the resistance of newly developed antimicrobial agents against S. pneumoniae was rarely reported. Furthermore, understanding the relationship between serotypes, resistance mechanisms, and virulence in S. pneumoniae is essential for disease management and vaccine development.</p><p><strong>Methods: </strong>A total of 208 S. pneumoniae isolates were collected across nine hospitals in seven Chinese cities/provinces from January 2023 to June 2024. Molecular characteristics were analyzed using whole-genome sequencing to identify serotypes, sequence types, virulence genes, and potential resistance mechanisms. Antibiotic susceptibility test (AST) was performed against 14 agents, involving new antibiotics (eravacycline, omadacycline, nemonoxacin, and contezolid).</p><p><strong>Results: </strong>Serotypes 19 F (24.6%) and 23 F (11.1%) predominated, with vaccine coverage rates of PCV13 at 66.8%. High resistance rates in S. pneumoniae were observed for erythromycin (208/208, 100%), clindamycin (197/208, 94.7%), and tetracycline (192/208, 92.3%). 13.5% (28/208) and 2.9% (6/208) strains were intermediate and resistant to penicillin, respectively. The new antibiotics showed low resistance, namely, 1.9% (4/208), 0.5% (1/208), 1.9% (4/208), and 7.2% (15/208) resistant to eravacycline, omadacycline, contezolid, and nemonoxacin, respectively. Resistance mechanisms included mutations in 23S rRNA for oxazolidinones, tet genes for tetracyclines, and gyrA/parC for fluoroquinolones.</p><p><strong>Conclusions: </strong>S. pneumoniae in China exhibits high genetic diversity and significant antibiotic resistance, underscoring the need for continuous surveillance and updated vaccines. New antibiotics remain effective against multidrug-resistant strains, offering potential treatment options in clinical settings.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"255"},"PeriodicalIF":4.0,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143959711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC MicrobiologyPub Date : 2025-04-28DOI: 10.1186/s12866-025-03963-z
Amjad Ahmadi, Leili Shokoohizadeh, Farshad Sheikhesmaili, Mohammadali Khan Mirzaei, Asadollah Mohammadi, Bahram Nikkhoo, Hakim Khodaei, Mohammad Yousef Alikhani, Rasoul Yousefimashouf
{"title":"Gut microbiomes and treatment-resistant ulcerative colitis: a case-control study using qPCR.","authors":"Amjad Ahmadi, Leili Shokoohizadeh, Farshad Sheikhesmaili, Mohammadali Khan Mirzaei, Asadollah Mohammadi, Bahram Nikkhoo, Hakim Khodaei, Mohammad Yousef Alikhani, Rasoul Yousefimashouf","doi":"10.1186/s12866-025-03963-z","DOIUrl":"https://doi.org/10.1186/s12866-025-03963-z","url":null,"abstract":"<p><strong>Background: </strong>The gut microbiome has been identified as a pivotal factor in ulcerative colitis (UC), given its role as the main reservoir of microbes in the body. This community of microorganisms, present in variable concentrations in the digestive tract, makes a wide range of beneficial roles for the host. However, the role of the gut microbiome in patients with refractory UC is still significant, so this study aimed to further investigate the role of these bacteria in patients with refractory UC.</p><p><strong>Methods: </strong>This case-control study was conducted on stool samples from four distinct groups: the first group comprised new patients diagnosed with ulcerative colitis (all of them had responded to treatment after follow-up) (N = 24); the second group consisted of patients with treatment-resistant ulcerative colitis (N = 23); the third group included first-degree relatives of group 1 patients (N = 24); and the fourth group consisted of first-degree relatives of group 2 patients (N = 23). The research tools employed in this study included a questionnaire, quantitative real-time PCR (qPCR) test, and culture on stool samples.</p><p><strong>Result: </strong>The mean age of patients in groups 1 and 2 was 45.88 ± 18.51 and 41.30 ± 13.01 years, while the mean age of controls in groups 3 and 4 was 37.29 ± 9.62 and 40.96 ± 13.01 years, respectively. Stool culture results for pathogenic bacteria were negative in all four groups. The of history of consuming dairy products containing probiotics was highest in Group 1, with 22 (91.67%) subjects, while the lowest was observed in Group 3, with 16 (66.67%). The highest history of self-administered antibiotic use was observed in Group 2, with 13 cases (56.52%), while the lowest was noted in Group 3, with 4 cases (16.67%). The findings indicated a statistically significant relationship (P < 0.05) between Groups 2 and 4 with respect to the E. coli and Bifidobacterium ssp. microbial population. Additionally, a significant relationship was identified between the Lactobacillus ssp., Bifidobacterium ssp., and Bacteroides ssp. microbial community between groups 1 and 2 (P < 0.05).</p><p><strong>Conclusion: </strong>The findings of this study demonstrated that several intestinal microbiomes have a substantial impact on the management of ulcerative colitis. The results of this study suggest that by comparing the gut microbiome of treatment-resistant and individuals newly diagnosed with ulcerative colitis, we can gain a better understanding of microbiome differences that may influence treatment outcomes. The results of this study may also lead to the identification of new therapeutic strategies that are based on regulating the gut microbiome. These strategies could include the use of fecal microbiome transplantation (FMT), probiotics, prebiotics, or specific bacteria-based therapies.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"254"},"PeriodicalIF":4.0,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143981473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}