Tianxiang Liu, Cangzhi Jia, Yue Bi, Xudong Guo, Quan Zou, Fuyi Li
{"title":"scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks.","authors":"Tianxiang Liu, Cangzhi Jia, Yue Bi, Xudong Guo, Quan Zou, Fuyi Li","doi":"10.1093/bib/bbae486","DOIUrl":"10.1093/bib/bbae486","url":null,"abstract":"<p><p>Single-cell ribonucleic acid sequencing (scRNA-seq) technology can be used to perform high-resolution analysis of the transcriptomes of individual cells. Therefore, its application has gained popularity for accurately analyzing the ever-increasing content of heterogeneous single-cell datasets. Central to interpreting scRNA-seq data is the clustering of cells to decipher transcriptomic diversity and infer cell behavior patterns. However, its complexity necessitates the application of advanced methodologies capable of resolving the inherent heterogeneity and limited gene expression characteristics of single-cell data. Herein, we introduce a novel deep learning-based algorithm for single-cell clustering, designated scDFN, which can significantly enhance the clustering of scRNA-seq data through a fusion network strategy. The scDFN algorithm applies a dual mechanism involving an autoencoder to extract attribute information and an improved graph autoencoder to capture topological nuances, integrated via a cross-network information fusion mechanism complemented by a triple self-supervision strategy. This fusion is optimized through a holistic consideration of four distinct loss functions. A comparative analysis with five leading scRNA-seq clustering methodologies across multiple datasets revealed the superiority of scDFN, as determined by better the Normalized Mutual Information (NMI) and the Adjusted Rand Index (ARI) metrics. Additionally, scDFN demonstrated robust multi-cluster dataset performance and exceptional resilience to batch effects. Ablation studies highlighted the key roles of the autoencoder and the improved graph autoencoder components, along with the critical contribution of the four joint loss functions to the overall efficacy of the algorithm. Through these advancements, scDFN set a new benchmark in single-cell clustering and can be used as an effective tool for the nuanced analysis of single-cell transcriptomics.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hilbert Yuen In Lam, Jia Sheng Guan, Xing Er Ong, Robbe Pincket, Yuguang Mu
{"title":"Protein language models are performant in structure-free virtual screening.","authors":"Hilbert Yuen In Lam, Jia Sheng Guan, Xing Er Ong, Robbe Pincket, Yuguang Mu","doi":"10.1093/bib/bbae480","DOIUrl":"https://doi.org/10.1093/bib/bbae480","url":null,"abstract":"<p><p>Hitherto virtual screening (VS) has been typically performed using a structure-based drug design paradigm. Such methods typically require the use of molecular docking on high-resolution three-dimensional structures of a target protein-a computationally-intensive and time-consuming exercise. This work demonstrates that by employing protein language models and molecular graphs as inputs to a novel graph-to-transformer cross-attention mechanism, a screening power comparable to state-of-the-art structure-based models can be achieved. The implications thereof include highly expedited VS due to the greatly reduced compute required to run this model, and the ability to perform early stages of computer-aided drug design in the complete absence of 3D protein structures.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis.","authors":"Linjie Wang, Wei Li, Fanghui Zhou, Kun Yu, Chaolu Feng, Dazhe Zhao","doi":"10.1093/bib/bbae477","DOIUrl":"https://doi.org/10.1093/bib/bbae477","url":null,"abstract":"<p><p>Dimensionality reduction and clustering are crucial tasks in single-cell RNA sequencing (scRNA-seq) data analysis, treated independently in the current process, hindering their mutual benefits. The latest methods jointly optimize these tasks through deep clustering. However, contrastive learning, with powerful representation capability, can bridge the gap that common deep clustering methods face, which requires pre-defined cluster centers. Therefore, a dual-level contrastive clustering method with nonuniform sampling (nsDCC) is proposed for scRNA-seq data analysis. Dual-level contrastive clustering, which combines instance-level contrast and cluster-level contrast, jointly optimizes dimensionality reduction and clustering. Multi-positive contrastive learning and unit matrix constraint are introduced in instance- and cluster-level contrast, respectively. Furthermore, the attention mechanism is introduced to capture inter-cellular information, which is beneficial for clustering. The nsDCC focuses on important samples at category boundaries and in minority categories by the proposed nearest boundary sparsest density weight assignment algorithm, making it capable of capturing comprehensive characteristics against imbalanced datasets. Experimental results show that nsDCC outperforms the six other state-of-the-art methods on both real and simulated scRNA-seq data, validating its performance on dimensionality reduction and clustering of scRNA-seq data, especially for imbalanced data. Simulation experiments demonstrate that nsDCC is insensitive to \"dropout events\" in scRNA-seq. Finally, cluster differential expressed gene analysis confirms the meaningfulness of results from nsDCC. In summary, nsDCC is a new way of analyzing and understanding scRNA-seq data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zilin Ren, Jiarong Zhang, Yixiang Zhang, Tingting Yang, Pingping Sun, Jiguo Xue, Xiaochen Bo, Bo Zhou, Jiangwei Yan, Ming Ni
{"title":"NASTRA: accurate analysis of short tandem repeat markers by nanopore sequencing with repeat-structure-aware algorithm.","authors":"Zilin Ren, Jiarong Zhang, Yixiang Zhang, Tingting Yang, Pingping Sun, Jiguo Xue, Xiaochen Bo, Bo Zhou, Jiangwei Yan, Ming Ni","doi":"10.1093/bib/bbae472","DOIUrl":"https://doi.org/10.1093/bib/bbae472","url":null,"abstract":"<p><p>Short-tandem repeats (STRs) are the type of genetic markers extensively utilized in biomedical and forensic applications. Due to sequencing noise in nanopore sequencing, accurate analysis methods are lacking. We developed NASTRA, an innovative tool for Nanopore Autosomal Short Tandem Repeat Analysis, which overcomes traditional database-based methods' limitations and provides a precise germline analysis of STR genetic markers without the need for allele sequence reference. Demonstrating high accuracy in cell line authentication testing and paternity testing, NASTRA significantly surpasses existing methods in both speed and accuracy. This advancement makes it a promising solution for rapid cell line authentication and kinship testing, highlighting the potential of nanopore sequencing for in-field applications.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Cover Persistence (MCP)-based machine learning for polymer property prediction.","authors":"Yipeng Zhang, Cong Shen, Kelin Xia","doi":"10.1093/bib/bbae465","DOIUrl":"https://doi.org/10.1093/bib/bbae465","url":null,"abstract":"<p><p>Accurate and efficient prediction of polymers properties is crucial for polymer design. Recently, data-driven artificial intelligence (AI) models have demonstrated great promise in polymers property analysis. Even with the great progresses, a pivotal challenge in all the AI-driven models remains to be the effective representation of molecules. Here we introduce Multi-Cover Persistence (MCP)-based molecular representation and featurization for the first time. Our MCP-based polymer descriptors are combined with machine learning models, in particular, Gradient Boosting Tree (GBT) models, for polymers property prediction. Different from all previous molecular representation, polymer molecular structure and interactions are represented as MCP, which utilizes Delaunay slices at different dimensions and Rhomboid tiling to characterize the complicated geometric and topological information within the data. Statistic features from the generated persistent barcodes are used as polymer descriptors, and further combined with GBT model. Our model has been extensively validated on polymer benchmark datasets. It has been found that our models can outperform traditional fingerprint-based models and has similar accuracy with geometric deep learning models. In particular, our model tends to be more effective on large-sized monomer structures, demonstrating the great potential of MCP in characterizing more complicated polymer data. This work underscores the potential of MCP in polymer informatics, presenting a novel perspective on molecular representation and its application in polymer science.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanghong Guo, Bencong Zhu, Chen Tang, Ruichen Rong, Ying Ma, Guanghua Xiao, Lin Xu, Qiwei Li
{"title":"BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data.","authors":"Yanghong Guo, Bencong Zhu, Chen Tang, Ruichen Rong, Ying Ma, Guanghua Xiao, Lin Xu, Qiwei Li","doi":"10.1093/bib/bbae524","DOIUrl":"10.1093/bib/bbae524","url":null,"abstract":"<p><p>The field of spatially resolved transcriptomics (SRT) has greatly advanced our understanding of cellular microenvironments by integrating spatial information with molecular data collected from multiple tissue sections or individuals. However, methods for multi-sample spatial clustering are lacking, and existing methods primarily rely on molecular information alone. This paper introduces BayeSMART, a Bayesian statistical method designed to identify spatial domains across multiple samples. BayeSMART leverages artificial intelligence (AI)-reconstructed single-cell level information from the paired histology images of multi-sample SRT datasets while simultaneously considering the spatial context of gene expression. The AI integration enables BayeSMART to effectively interpret the spatial domains. We conducted case studies using four datasets from various tissue types and SRT platforms, and compared BayeSMART with alternative multi-sample spatial clustering approaches and a number of state-of-the-art methods for single-sample SRT analysis, demonstrating that it surpasses existing methods in terms of clustering accuracy, interpretability, and computational efficiency. BayeSMART offers new insights into the spatial organization of cells in multi-sample SRT data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current computational tools for protein lysine acylation site prediction.","authors":"Zhaohui Qin, Haoran Ren, Pei Zhao, Kaiyuan Wang, Huixia Liu, Chunbo Miao, Yanxiu Du, Junzhou Li, Liuji Wu, Zhen Chen","doi":"10.1093/bib/bbae469","DOIUrl":"10.1093/bib/bbae469","url":null,"abstract":"<p><p>As a main subtype of post-translational modification (PTM), protein lysine acylations (PLAs) play crucial roles in regulating diverse functions of proteins. With recent advancements in proteomics technology, the identification of PTM is becoming a data-rich field. A large amount of experimentally verified data is urgently required to be translated into valuable biological insights. With computational approaches, PLA can be accurately detected across the whole proteome, even for organisms with small-scale datasets. Herein, a comprehensive summary of 166 in silico PLA prediction methods is presented, including a single type of PLA site and multiple types of PLA sites. This recapitulation covers important aspects that are critical for the development of a robust predictor, including data collection and preparation, sample selection, feature representation, classification algorithm design, model evaluation, and method availability. Notably, we discuss the application of protein language models and transfer learning to solve the small-sample learning issue. We also highlight the prediction methods developed for functionally relevant PLA sites and species/substrate/cell-type-specific PLA sites. In conclusion, this systematic review could potentially facilitate the development of novel PLA predictors and offer useful insights to researchers from various disciplines.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure-preserved integration of scRNA-seq data using heterogeneous graph neural network.","authors":"Xun Zhang, Kun Qian, Hongwei Li","doi":"10.1093/bib/bbae538","DOIUrl":"https://doi.org/10.1093/bib/bbae538","url":null,"abstract":"<p><p>The integration of single-cell RNA sequencing (scRNA-seq) data from multiple experimental batches enables more comprehensive characterizations of cell states. Given that existing methods disregard the structural information between cells and genes, we proposed a structure-preserved scRNA-seq data integration approach using heterogeneous graph neural network (scHetG). By establishing a heterogeneous graph that represents the interactions between multiple batches of cells and genes, and combining a heterogeneous graph neural network with contrastive learning, scHetG concurrently obtained cell and gene embeddings with structural information. A comprehensive assessment covering different species, tissues and scales indicated that scHetG is an efficacious method for eliminating batch effects while preserving the structural information of cells and genes, including batch-specific cell types and cell-type specific gene co-expression patterns.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semi-supervised learning with pseudo-labeling compares favorably with large language models for regulatory sequence prediction.","authors":"Han Phan, Céline Brouard, Raphaël Mourad","doi":"10.1093/bib/bbae560","DOIUrl":"https://doi.org/10.1093/bib/bbae560","url":null,"abstract":"<p><p>Predicting molecular processes using deep learning is a promising approach to provide biological insights for non-coding single nucleotide polymorphisms identified in genome-wide association studies. However, most deep learning methods rely on supervised learning, which requires DNA sequences associated with functional data, and whose amount is severely limited by the finite size of the human genome. Conversely, the amount of mammalian DNA sequences is growing exponentially due to ongoing large-scale sequencing projects, but in most cases without functional data. To alleviate the limitations of supervised learning, we propose a novel semi-supervised learning (SSL) based on pseudo-labeling, which allows to exploit unlabeled DNA sequences from numerous genomes during model pre-training. We further improved it incorporating principles from the Noisy Student algorithm to predict the confidence in pseudo-labeled data used for pre-training, which showed improvements for transcription factor with very few binding (very small training data). The approach is very flexible and can be used to train any neural architecture including state-of-the-art models, and shows in most cases strong predictive performance improvements compared to standard supervised learning. Moreover, small models trained by SSL showed similar or better performance than large language model DNABERT2.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DrugDoctor: enhancing drug recommendation in cold-start scenario via visit-level representation learning and training.","authors":"Yabin Kuang, Minzhu Xie","doi":"10.1093/bib/bbae464","DOIUrl":"10.1093/bib/bbae464","url":null,"abstract":"<p><p>Medication recommendation is a crucial application of artificial intelligence in healthcare. Current methodologies mostly depend on patient-level longitudinal representation, which utilizes the entirety of historical electronic health records for making predictions. However, they tend to overlook a few key elements: (1) The need to analyze the impact of past medications on previous conditions. (2) Similarity in patient visits is more common than similarity in the complete medical histories of patients. (3) It is difficult to accurately represent patient-level longitudinal data due to the varying numbers of visits. To our knowledge, current models face difficulties in dealing with initial patient visits (i.e. in cold-start scenarios) which are common in clinical practice. This paper introduces DrugDoctor, an innovative drug recommendation model crafted to emulate the decision-making mechanics of human doctors. Unlike previous methods, DrugDoctor explores the visit-level relationship between prescriptions and diseases while considering the impact of past prescriptions on the patient's condition to provide more accurate recommendations. We design a plug-and-play block to effectively capture drug substructure-aware disease information and effectiveness-aware medication information, employing cross-attention and multi-head self-attention mechanisms. Furthermore, DrugDoctor adopts a fundamentally new visit-level training strategy, aligning more closely with the practices of doctors. Extensive experiments conducted on the MIMIC-III and MIMIC-IV datasets demonstrate that DrugDoctor outperforms 10 other state-of-the-art methods in terms of Jaccard, F1-score, and PRAUC. Moreover, DrugDoctor exhibits strong robustness in handling patients with varying numbers of visits and effectively tackles \"cold-start\" issues in medication combination recommendations.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}