TARGET-SL:使用驱动优先级和合成致死率的精确基本基因预测。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Rhys Gillman, Matt A Field, Ulf Schmitz, Lionel Hebbard
{"title":"TARGET-SL:使用驱动优先级和合成致死率的精确基本基因预测。","authors":"Rhys Gillman, Matt A Field, Ulf Schmitz, Lionel Hebbard","doi":"10.1093/bib/bbaf255","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to identify patient-specific vulnerabilities to guide cancer treatments is a vital area of research. However, predictive bioinformatics tools are difficult to translate into clinical applications due to a lack of in vitro and in vivo validation. While the increasing number of personalised driver prioritisation algorithms (PDPAs) report powerful patient-specific information, the results do not easily translate into treatment strategies. Critical in addressing this gap is the ability to meaningfully benchmark and validate PDPA predictions. To address this, we developed Tumour-specific Algorithm for Ranking GEnetic Targets via Synthetic Lethality (TARGET-SL), which utilises PDPA predictions to produce a ranked list of predicted essential genes that can be validated in vitro and in vivo. This framework employs a novel strategy to benchmark PDPAs, by comparing predictions with ground truth gene essentiality data from large-scale CRISPR-knockout and drug sensitivity screens. Importantly TARGET-SL identifies vulnerabilities that are more exclusive to individual tumours than predictions based on canonical driver genes. We further find that TARGET-SL is better at identifying sample-specific vulnerabilities than other similar tools.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145226/pdf/","citationCount":"0","resultStr":"{\"title\":\"TARGET-SL: precision essential gene prediction using driver prioritisation and synthetic lethality.\",\"authors\":\"Rhys Gillman, Matt A Field, Ulf Schmitz, Lionel Hebbard\",\"doi\":\"10.1093/bib/bbaf255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to identify patient-specific vulnerabilities to guide cancer treatments is a vital area of research. However, predictive bioinformatics tools are difficult to translate into clinical applications due to a lack of in vitro and in vivo validation. While the increasing number of personalised driver prioritisation algorithms (PDPAs) report powerful patient-specific information, the results do not easily translate into treatment strategies. Critical in addressing this gap is the ability to meaningfully benchmark and validate PDPA predictions. To address this, we developed Tumour-specific Algorithm for Ranking GEnetic Targets via Synthetic Lethality (TARGET-SL), which utilises PDPA predictions to produce a ranked list of predicted essential genes that can be validated in vitro and in vivo. This framework employs a novel strategy to benchmark PDPAs, by comparing predictions with ground truth gene essentiality data from large-scale CRISPR-knockout and drug sensitivity screens. Importantly TARGET-SL identifies vulnerabilities that are more exclusive to individual tumours than predictions based on canonical driver genes. We further find that TARGET-SL is better at identifying sample-specific vulnerabilities than other similar tools.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145226/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf255\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf255","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

识别患者特异性弱点以指导癌症治疗的能力是一个至关重要的研究领域。然而,由于缺乏体外和体内验证,预测性生物信息学工具很难转化为临床应用。虽然越来越多的个性化驾驶员优先排序算法(pdpa)报告了强大的患者特定信息,但结果并不容易转化为治疗策略。解决这一差距的关键是有意义的基准测试和验证PDPA预测的能力。为了解决这个问题,我们开发了肿瘤特异性算法,通过合成致死率对遗传靶标进行排名(TARGET-SL),该算法利用PDPA预测来生成可在体外和体内验证的预测必需基因的排名列表。该框架采用了一种新的策略来对pdpa进行基准测试,通过将预测结果与大规模crispr敲除和药物敏感性筛选的真实基因重要性数据进行比较。重要的是,TARGET-SL识别的漏洞比基于典型驱动基因的预测更专属于单个肿瘤。我们进一步发现,TARGET-SL比其他类似工具更擅长识别特定于样本的漏洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TARGET-SL: precision essential gene prediction using driver prioritisation and synthetic lethality.

The ability to identify patient-specific vulnerabilities to guide cancer treatments is a vital area of research. However, predictive bioinformatics tools are difficult to translate into clinical applications due to a lack of in vitro and in vivo validation. While the increasing number of personalised driver prioritisation algorithms (PDPAs) report powerful patient-specific information, the results do not easily translate into treatment strategies. Critical in addressing this gap is the ability to meaningfully benchmark and validate PDPA predictions. To address this, we developed Tumour-specific Algorithm for Ranking GEnetic Targets via Synthetic Lethality (TARGET-SL), which utilises PDPA predictions to produce a ranked list of predicted essential genes that can be validated in vitro and in vivo. This framework employs a novel strategy to benchmark PDPAs, by comparing predictions with ground truth gene essentiality data from large-scale CRISPR-knockout and drug sensitivity screens. Importantly TARGET-SL identifies vulnerabilities that are more exclusive to individual tumours than predictions based on canonical driver genes. We further find that TARGET-SL is better at identifying sample-specific vulnerabilities than other similar tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信