Rhys Gillman, Matt A Field, Ulf Schmitz, Lionel Hebbard
{"title":"TARGET-SL:使用驱动优先级和合成致死率的精确基本基因预测。","authors":"Rhys Gillman, Matt A Field, Ulf Schmitz, Lionel Hebbard","doi":"10.1093/bib/bbaf255","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to identify patient-specific vulnerabilities to guide cancer treatments is a vital area of research. However, predictive bioinformatics tools are difficult to translate into clinical applications due to a lack of in vitro and in vivo validation. While the increasing number of personalised driver prioritisation algorithms (PDPAs) report powerful patient-specific information, the results do not easily translate into treatment strategies. Critical in addressing this gap is the ability to meaningfully benchmark and validate PDPA predictions. To address this, we developed Tumour-specific Algorithm for Ranking GEnetic Targets via Synthetic Lethality (TARGET-SL), which utilises PDPA predictions to produce a ranked list of predicted essential genes that can be validated in vitro and in vivo. This framework employs a novel strategy to benchmark PDPAs, by comparing predictions with ground truth gene essentiality data from large-scale CRISPR-knockout and drug sensitivity screens. Importantly TARGET-SL identifies vulnerabilities that are more exclusive to individual tumours than predictions based on canonical driver genes. We further find that TARGET-SL is better at identifying sample-specific vulnerabilities than other similar tools.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145226/pdf/","citationCount":"0","resultStr":"{\"title\":\"TARGET-SL: precision essential gene prediction using driver prioritisation and synthetic lethality.\",\"authors\":\"Rhys Gillman, Matt A Field, Ulf Schmitz, Lionel Hebbard\",\"doi\":\"10.1093/bib/bbaf255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to identify patient-specific vulnerabilities to guide cancer treatments is a vital area of research. However, predictive bioinformatics tools are difficult to translate into clinical applications due to a lack of in vitro and in vivo validation. While the increasing number of personalised driver prioritisation algorithms (PDPAs) report powerful patient-specific information, the results do not easily translate into treatment strategies. Critical in addressing this gap is the ability to meaningfully benchmark and validate PDPA predictions. To address this, we developed Tumour-specific Algorithm for Ranking GEnetic Targets via Synthetic Lethality (TARGET-SL), which utilises PDPA predictions to produce a ranked list of predicted essential genes that can be validated in vitro and in vivo. This framework employs a novel strategy to benchmark PDPAs, by comparing predictions with ground truth gene essentiality data from large-scale CRISPR-knockout and drug sensitivity screens. Importantly TARGET-SL identifies vulnerabilities that are more exclusive to individual tumours than predictions based on canonical driver genes. We further find that TARGET-SL is better at identifying sample-specific vulnerabilities than other similar tools.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145226/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf255\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf255","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
TARGET-SL: precision essential gene prediction using driver prioritisation and synthetic lethality.
The ability to identify patient-specific vulnerabilities to guide cancer treatments is a vital area of research. However, predictive bioinformatics tools are difficult to translate into clinical applications due to a lack of in vitro and in vivo validation. While the increasing number of personalised driver prioritisation algorithms (PDPAs) report powerful patient-specific information, the results do not easily translate into treatment strategies. Critical in addressing this gap is the ability to meaningfully benchmark and validate PDPA predictions. To address this, we developed Tumour-specific Algorithm for Ranking GEnetic Targets via Synthetic Lethality (TARGET-SL), which utilises PDPA predictions to produce a ranked list of predicted essential genes that can be validated in vitro and in vivo. This framework employs a novel strategy to benchmark PDPAs, by comparing predictions with ground truth gene essentiality data from large-scale CRISPR-knockout and drug sensitivity screens. Importantly TARGET-SL identifies vulnerabilities that are more exclusive to individual tumours than predictions based on canonical driver genes. We further find that TARGET-SL is better at identifying sample-specific vulnerabilities than other similar tools.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.