Abrar Rahman Abir, Md Toki Tahmid, Rafiqul Islam Rayan, M Saifur Rahman
{"title":"DeepRNA-Twist: language-model-guided RNA torsion angle prediction with attention-inception network.","authors":"Abrar Rahman Abir, Md Toki Tahmid, Rafiqul Islam Rayan, M Saifur Rahman","doi":"10.1093/bib/bbaf199","DOIUrl":null,"url":null,"abstract":"<p><p>RNA torsion and pseudo-torsion angles are critical in determining the three-dimensional conformation of RNA molecules, which in turn governs their biological functions. However, current methods are limited by RNA's structural complexity as well as flexibility, with experimental techniques being costly and computational approaches struggling to capture the intricate sequence dependencies needed for accurate predictions. To address these challenges, we introduce DeepRNA-Twist, a novel deep learning framework designed to predict RNA torsion and pseudo-torsion angles directly from sequence. DeepRNA-Twist utilizes RNA language model embeddings, which provides rich, context-aware feature representations of RNA sequences. Additionally, it introduces 2A3IDC module (Attention Augmented Inception Inside Inception with Dilated CNN), combining inception networks with dilated convolutions and multi-head attention mechanism. The dilated convolutions capture long-range dependencies in the sequence without requiring a large number of parameters, while the multi-head attention mechanism enhances the model's ability to focus on both local and global structural features simultaneously. DeepRNA-Twist was rigorously evaluated on benchmark datasets, including RNA-Puzzles, CASP-RNA, and SPOT-RNA-1D, and demonstrated significant improvements over existing methods, achieving state-of-the-art accuracy. Source code is available at https://github.com/abrarrahmanabir/DeepRNA-Twist.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf199","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
RNA torsion and pseudo-torsion angles are critical in determining the three-dimensional conformation of RNA molecules, which in turn governs their biological functions. However, current methods are limited by RNA's structural complexity as well as flexibility, with experimental techniques being costly and computational approaches struggling to capture the intricate sequence dependencies needed for accurate predictions. To address these challenges, we introduce DeepRNA-Twist, a novel deep learning framework designed to predict RNA torsion and pseudo-torsion angles directly from sequence. DeepRNA-Twist utilizes RNA language model embeddings, which provides rich, context-aware feature representations of RNA sequences. Additionally, it introduces 2A3IDC module (Attention Augmented Inception Inside Inception with Dilated CNN), combining inception networks with dilated convolutions and multi-head attention mechanism. The dilated convolutions capture long-range dependencies in the sequence without requiring a large number of parameters, while the multi-head attention mechanism enhances the model's ability to focus on both local and global structural features simultaneously. DeepRNA-Twist was rigorously evaluated on benchmark datasets, including RNA-Puzzles, CASP-RNA, and SPOT-RNA-1D, and demonstrated significant improvements over existing methods, achieving state-of-the-art accuracy. Source code is available at https://github.com/abrarrahmanabir/DeepRNA-Twist.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.