{"title":"De-motif sampling: an approach to decompose hierarchical motifs with applications in T cell recognition.","authors":"Xinyi Tang, Ran Liu","doi":"10.1093/bib/bbaf221","DOIUrl":null,"url":null,"abstract":"<p><p>T cell immune recognition requires the interactions among antigen peptides, Major Histocompatibility Complex (MHC) molecules, and T cell receptors (TCRs). While research into the interactions between MHC and peptides is well established, the specific preferences of TCRs for peptides remain less understood. This gap largely stems from the requirement that antigen peptides must be bound to MHC and presented on the cell surface prior to recognition by TCRs. Typically, motifs related to TCR recognition are influenced by MHC characteristics, limiting the direct identification of TCR-specific motifs. To address this challenge, this study introduces a Bayesian method designed to decompose hierarchical motifs independently of MHC constraints. This model, rigorously tested through comprehensive simulation experiments and applied to real data, establishes a clear hierarchical structure for motifs related to T cell recognition.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf221","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
T cell immune recognition requires the interactions among antigen peptides, Major Histocompatibility Complex (MHC) molecules, and T cell receptors (TCRs). While research into the interactions between MHC and peptides is well established, the specific preferences of TCRs for peptides remain less understood. This gap largely stems from the requirement that antigen peptides must be bound to MHC and presented on the cell surface prior to recognition by TCRs. Typically, motifs related to TCR recognition are influenced by MHC characteristics, limiting the direct identification of TCR-specific motifs. To address this challenge, this study introduces a Bayesian method designed to decompose hierarchical motifs independently of MHC constraints. This model, rigorously tested through comprehensive simulation experiments and applied to real data, establishes a clear hierarchical structure for motifs related to T cell recognition.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.