{"title":"利用alphafold2预测结构和表面特征进行抗菌肽鉴定的多模态几何学习。","authors":"Zehua Sun, Jing Xu, Yumeng Zhang, Yiwen Zhang, Zhikang Wang, Xiaoyu Wang, Shanshan Li, Yuming Guo, Hsin Hui Shen, Jiangning Song","doi":"10.1093/bib/bbaf261","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are short peptides that play critical roles in diverse biological processes and exhibit functional activities against target organisms. While numerous methods have demonstrated the effectiveness of deep neural networks for AMP identification using sequence features; nevertheless, higher-level peptide characteristics-such as 3D structure and geometric surface features-have not been comprehensively explored. To address this gap, we introduce the SSFGM-Model (Sequence, Structure, Surface, Graph, and Geometric-based Model), a novel framework that integrates multiple feature types to enhance AMP identification. The model represents each peptide sequence as a graph, where nodes are characterized by amino acid features derived from ProteinBERT, ESM-2, and One-hot embeddings. Graph convolutional networks and an attention mechanism are employed to capture high-order structural and sequential relationships. Additionally, surface geometry and physicochemical properties are processed using a geometric neural network. Finally, a feature fusion strategy combines the outputs from these subnetworks to enable robust AMP identification. Extensive benchmarking experiments demonstrate that the SSFGM-Model outperforms current state-of-the-art methods. An ablation study further confirms the critical role of sequence, structural, and surface features in AMP identification. The key contribution of this work is the innovative integration of multiple levels of peptide characteristics and the combination of geometric and graph neural networks. This approach provides a more comprehensive understanding of the sequence-structure-function relationship of peptides, paving the way for more accurate AMP prediction. The SSFGM-Model has a significant potential for applications in the discovery and design of novel AMP-based therapeutics. The source code is publicly available at https://github.com/ggcameronnogg/SSFGM-Model.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal geometric learning for antimicrobial peptide identification by leveraging alphafold2-predicted structures and surface features.\",\"authors\":\"Zehua Sun, Jing Xu, Yumeng Zhang, Yiwen Zhang, Zhikang Wang, Xiaoyu Wang, Shanshan Li, Yuming Guo, Hsin Hui Shen, Jiangning Song\",\"doi\":\"10.1093/bib/bbaf261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial peptides (AMPs) are short peptides that play critical roles in diverse biological processes and exhibit functional activities against target organisms. While numerous methods have demonstrated the effectiveness of deep neural networks for AMP identification using sequence features; nevertheless, higher-level peptide characteristics-such as 3D structure and geometric surface features-have not been comprehensively explored. To address this gap, we introduce the SSFGM-Model (Sequence, Structure, Surface, Graph, and Geometric-based Model), a novel framework that integrates multiple feature types to enhance AMP identification. The model represents each peptide sequence as a graph, where nodes are characterized by amino acid features derived from ProteinBERT, ESM-2, and One-hot embeddings. Graph convolutional networks and an attention mechanism are employed to capture high-order structural and sequential relationships. Additionally, surface geometry and physicochemical properties are processed using a geometric neural network. Finally, a feature fusion strategy combines the outputs from these subnetworks to enable robust AMP identification. Extensive benchmarking experiments demonstrate that the SSFGM-Model outperforms current state-of-the-art methods. An ablation study further confirms the critical role of sequence, structural, and surface features in AMP identification. The key contribution of this work is the innovative integration of multiple levels of peptide characteristics and the combination of geometric and graph neural networks. This approach provides a more comprehensive understanding of the sequence-structure-function relationship of peptides, paving the way for more accurate AMP prediction. The SSFGM-Model has a significant potential for applications in the discovery and design of novel AMP-based therapeutics. The source code is publicly available at https://github.com/ggcameronnogg/SSFGM-Model.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf261\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf261","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Multimodal geometric learning for antimicrobial peptide identification by leveraging alphafold2-predicted structures and surface features.
Antimicrobial peptides (AMPs) are short peptides that play critical roles in diverse biological processes and exhibit functional activities against target organisms. While numerous methods have demonstrated the effectiveness of deep neural networks for AMP identification using sequence features; nevertheless, higher-level peptide characteristics-such as 3D structure and geometric surface features-have not been comprehensively explored. To address this gap, we introduce the SSFGM-Model (Sequence, Structure, Surface, Graph, and Geometric-based Model), a novel framework that integrates multiple feature types to enhance AMP identification. The model represents each peptide sequence as a graph, where nodes are characterized by amino acid features derived from ProteinBERT, ESM-2, and One-hot embeddings. Graph convolutional networks and an attention mechanism are employed to capture high-order structural and sequential relationships. Additionally, surface geometry and physicochemical properties are processed using a geometric neural network. Finally, a feature fusion strategy combines the outputs from these subnetworks to enable robust AMP identification. Extensive benchmarking experiments demonstrate that the SSFGM-Model outperforms current state-of-the-art methods. An ablation study further confirms the critical role of sequence, structural, and surface features in AMP identification. The key contribution of this work is the innovative integration of multiple levels of peptide characteristics and the combination of geometric and graph neural networks. This approach provides a more comprehensive understanding of the sequence-structure-function relationship of peptides, paving the way for more accurate AMP prediction. The SSFGM-Model has a significant potential for applications in the discovery and design of novel AMP-based therapeutics. The source code is publicly available at https://github.com/ggcameronnogg/SSFGM-Model.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.