{"title":"Decreases in frequency-dependent intrinsic activity of the default mode network are associated with depression and cognition in patients with postacute sequelae of SARS-CoV-2 infection.","authors":"Yao Wang, Ziwei Yang, Xiumei Zheng, Xiao Liang, Lin Wu, Chengsi Wu, Jiankun Dai, Yuan Cao, Xianjun Zeng, Meng Li, Fuqing Zhou","doi":"10.1007/s00429-025-02895-8","DOIUrl":"10.1007/s00429-025-02895-8","url":null,"abstract":"<p><p>A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as \"post-acute sequelae of SARS-CoV-2 infection (PASC)\". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited. The voxel-level fractional amplitude of low-frequency fluctuation (fALFF) was calculated in different frequency bands (typical frequency band: 0.01-0.10 Hz; slow 5: 0.01-0.023 Hz; slow 4: 0.023-0.073 Hz) to assess regional intrinsic activity patterns within different groups. Correlation analyses were performed to explore the associations between frequency-dependent alterations and clinical variables. Significant frequency-dependent alterations in intrinsic activity patterns were observed in both the PASC and non-PASC groups, primarily involving regions of the default mode network (DMN). The decreased fALFF values of the DMN in different frequency bands were associated with different symptoms in PASC. For example, decreased fALFF in the left precuneus in the typical frequency band was related to general attention impairment in PASC, whereas decreased fALFF in the left superior frontal gyrus appeared in non-PASC. The fALFF alterations in the left precuneus/posterior cingulate gyrus in the slow 5 band were also related to cognitive performance in PASC. Additionally, in the slow 4 band, decreased fALFF in the right angular gyrus was associated with depressive symptoms in the PASC. Our results may provide insights into the potential neural mechanisms underlying symptoms in PASC patients.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"36"},"PeriodicalIF":2.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enlargement of the human prefrontal cortex and brain mentalizing network: anatomically homogenous cross-species brain transformation.","authors":"Hideki Amano, Hiroki C Tanabe, Naomichi Ogihara","doi":"10.1007/s00429-025-02896-7","DOIUrl":"10.1007/s00429-025-02896-7","url":null,"abstract":"<p><p>To achieve a better understanding of the evolution of the large brain in humans, a comparative analysis of species differences in the brains of extant primate species is crucial, as it allows direct comparisons of the brains. We developed a method to achieve anatomically precise region-to-region homologous brain transformations across species using computational neuroanatomy. Utilizing three-dimensional neuroimaging data from humans (Homo sapiens), chimpanzees (Pan troglodytes), and Japanese macaques (Macaca fuscata), along with the anatomical labels of their respective brains, we aimed to create a cross-species average template brain that preserves neuroanatomical correspondence across species. Homologous transformation of the brain from one species to another can be computed using the cross-species average brain. Applying this transformation to human and chimpanzee brains revealed that, compared to chimpanzees, humans had significantly larger and more expanded prefrontal cortex, middle and posterior temporal gyrus, angular gyrus, precuneus, and cortical areas associated with mentalization. This neuroanatomically homologous brain transformation enables the systematic investigation of the similarities and differences in brain anatomy and structure across different species.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"34"},"PeriodicalIF":2.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ema Bokulić, Tila Medenica, Mihaela Bobić-Rasonja, Marija Milković-Periša, Nataša Jovanov-Milošević, Miloš Judaš, Goran Sedmak
{"title":"The expression of transcription factors in the human fetal subthalamic nucleus suggests its origin from the first hypothalamic prosomere.","authors":"Ema Bokulić, Tila Medenica, Mihaela Bobić-Rasonja, Marija Milković-Periša, Nataša Jovanov-Milošević, Miloš Judaš, Goran Sedmak","doi":"10.1007/s00429-025-02893-w","DOIUrl":"10.1007/s00429-025-02893-w","url":null,"abstract":"<p><p>In this study, we analyzed the spatio-temporal pattern of expression of specific transcription factors (PITX2, FOXA1, BARHL1, FOXP1, FOXP2) in the human fetal subthalamic nucleus and its neighboring structures from 11 postconceptional weeks (PCW) to 3 postnatal months. We found that all analyzed transcription factors are expressed already during the early fetal period (at 11 PCW). Both FOXP1- and FOXP2-immunoreactive cells were found in the subthalamic nucleus as well as in the striatum, thalamus, reticular nucleus, but not in the zona incerta. FOXP2-ir cells were also found in the lateral hypothalamic-supramamillary area (LHA-SMA) and internal pallidal segment.On the other hand, PITX2, FOXA1 and BARHL1 were expressed exclusively in the subthalamic nucleus and LHA-SMA, from 11 PCW until the birth, the only exception being gradual loss of BARHL1 expression in the LHA-SMA during the late fetal period.Our findings present the first evidence in the human fetal brain that neurons of the subthalamic nucleus do not originate in the diencephalon, as was proposed by classical histological studies, but instead share a common hypothalamic (hp1 prosomere) origin with neurons of the LHA-SMA group, as proposed by the prosomeric model of brain development.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"33"},"PeriodicalIF":2.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction.","authors":"Yutong Wu, Chen Zhang, Xiangge Ma, Xinyu Zhu, Lan Lin, Miao Tian","doi":"10.1007/s00429-024-02889-y","DOIUrl":"10.1007/s00429-024-02889-y","url":null,"abstract":"<p><p>The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks. The gray matter (GM) density maps obtained from T1 MRI data of 16,377 healthy participants aged 45 to 82 years from the UKB database were included in this study (mean age, <math><mrow><mn>64.27</mn> <mo>±</mo> <mn>7.52</mn></mrow> </math> , 7811 men). We propose an innovative deep learning architecture for predicting brain age based on GM density maps. The architecture combines a 3D dual-stream fully convolutional residual network (ds-FCRN) with a Transformer-based global-local feature learning paradigm to enhance prediction accuracy. Moreover, we employed Shapley values to elucidate the influence of various brain regions on prediction precision. On a test set of 3,276 healthy subjects (mean age, <math><mrow><mn>64.15</mn> <mo>±</mo> <mn>7.45</mn></mrow> </math> , 1561 men), our 3D ds-FCRN model achieved a mean absolute error of 2.2 years in brain age prediction, outperforming existing models on the same dataset. The posterior interpretation revealed that the temporal lobe plays the most significant role in the brain age prediction process, while frontal lobe aging is associated with the greatest number of lifestyle factors. Our designed 3D ds-FCRN model achieved high predictive accuracy and high decision transparency. The brain age vectors constructed using Shapley values provided brain region-level insights into life factors associated with abnormal brain aging.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"32"},"PeriodicalIF":2.7,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Li, Halim Ibrahim Baqapuri, Micha Keller, Stefan Wolter, Chi Zhang, Fengyu Cong, Klaus Mathiak
{"title":"Physiological fingerprinting of audiovisual warnings in assisted driving conditions: an investigation of fMRI and peripheral physiological indicators.","authors":"Ying Li, Halim Ibrahim Baqapuri, Micha Keller, Stefan Wolter, Chi Zhang, Fengyu Cong, Klaus Mathiak","doi":"10.1007/s00429-025-02891-y","DOIUrl":"10.1007/s00429-025-02891-y","url":null,"abstract":"<p><p>Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e., heart rate variability (HRV) and respiratory rate) is unknown, making it difficult to study the neural mechanism during takeover from the assistance system. In this paper, we established a mapping between the ANS regulation and brain activations of driving events in function magnetic resonance imaging (fMRI)-conditioned audiovisual warnings experiment to add physiological fingerprints for assisted driving. Firstly, we used the general linear model (GLM) to obtain brain activation clusters of driving events and brain activation clusters of peripheral physiological indicators in different frequency bands. Secondly, we redefined the input parameters based on the driving events to calculate the GLM to obtain the brain activation clusters of event-related physiological indicators. Finally, the relationship between the main activation clusters of driving events and the activation of event-related physiological indicators was quantified by the statistical test of the mean-time course of voxels within the region. The results showed that related areas of the brain responsible for movement, visceral autonomic regulation, auditory, and vision actively responded to the audiovisual warnings of automatic driving. The mappings created using them revealed that the correlation between driving event-related activation of brain regions and respiration worked at the onset of audiovisual warnings, especially between the intermediate (IM) and low frequency (LF) bands. For pre-emergency and takeover in audiovisual warnings, the correlations of HRV were dominant, with significant differences among LF, IM and high frequency (HF) bands. At different periods of audiovisual warnings, HRV and respiration play different roles in physiological fingerprints. Compared to respiratory indicators, HRV has higher sensitivity to emergency situations. This study investigates the interaction between driving-related network activity and ANS regulation, revealing the profound connection between driving behavior and neural activity, and contributing to the research of driving assistance systems.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"31"},"PeriodicalIF":2.7,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tuğçe Tuna, Tyler Banks, Gregory Glickert, Cem Sevinc, Satish S Nair, Gunes Unal
{"title":"Basal forebrain innervation of the amygdala: an anatomical and computational exploration.","authors":"Tuğçe Tuna, Tyler Banks, Gregory Glickert, Cem Sevinc, Satish S Nair, Gunes Unal","doi":"10.1007/s00429-024-02886-1","DOIUrl":"10.1007/s00429-024-02886-1","url":null,"abstract":"<p><p>Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity. We used retrograde tracing with fluorescent immunohistochemistry to identify cholinergic and non-cholinergic parvalbumin- or calbindin-immunoreactive BF neuronal subgroups targeting the input (lateral and basolateral nuclei) and output (central nucleus and the central bed nucleus of the stria terminalis) regions of the amygdaloid complex. We observed a dense non-cholinergic, putative GABAergic projection from the ventral pallidum (VP) and the substantia innominata (SI) to the basolateral amygdala (BLA). The VP/SI axonal projections to the BLA were confirmed using viral anterograde tracing and transsynaptic labeling. We tested the potential function of this VP/SI-BLA pathway in a 1000-cell biophysically realistic network model, which incorporated principal neurons and three major interneuron groups of the BLA, together with extrinsic glutamatergic, cholinergic, and VP/SI GABAergic inputs. We observed in silico that theta-modulation of VP/SI GABAergic projections enhanced theta oscillations in the BLA via their selective innervation of the parvalbumin-expressing local interneurons. Ablation of parvalbumin-, but not somatostatin- or calretinin-expressing, interneurons reduced theta power in the BLA model. These results suggest that long-range BF GABAergic projections may modulate network activity at their target regions through the formation of a common interneuron-type and oscillatory phase-specific disinhibitory motif.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"30"},"PeriodicalIF":2.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth Kuenzel, Sarah Al-Saoud, Michelle Fang, Emma G Duerden
{"title":"Early childhood stress and amygdala structure in children and adolescents with neurodevelopmental disorders.","authors":"Elizabeth Kuenzel, Sarah Al-Saoud, Michelle Fang, Emma G Duerden","doi":"10.1007/s00429-025-02890-z","DOIUrl":"10.1007/s00429-025-02890-z","url":null,"abstract":"<p><p>Children and adolescents with neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) may be more susceptible to early life stress compared to their neurotypical peers. This increased susceptibility may be linked to regionally-specific changes in the striatum and amygdala, brain regions sensitive to stress and critical for shaping maladaptive behavioural responses. This study examined early life stress and its impact on striatal and amygdala development in 62 children and adolescents (35 males, mean age = 10.12 years, SD = 3.6) with ASD (n = 14), ADHD (n = 28), or typical development (TD, n = 20) across two cohorts. We assessed stress from various sources, including from the family environment, loss of loved ones, social stress, and illness/injury. We further examined parenting styles as potential moderators of the effects of early life stress. Volumes of the striatum and amygdala were extracted using an automatic segmentation algorithm. Significant group differences in childhood stress exposure were observed (F = 3.29, df = 8, p = 0.002), with autistic children facing more early life stressors (social stress, illness/injury) compared to those with ADHD and neurotypical peers (both, p < 0.002). In autistic children, amygdala volumes were significantly associated with early life stress related to the familial environment, experiences of significant loss, and illness/injury (all, p < 0.03). Positive parenting moderated these effects. These findings suggest that autistic children are more likely to experience early life stress and exhibit region-specific changes in the amygdala, a key brain region implicated in emotional processing and stress responses. This underscores the need for targeted interventions to support autistic children in managing early life stress to potentially mitigate its impact on brain development.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"29"},"PeriodicalIF":2.7,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neural correlates of auditory comprehension and integration of sanskrit verse: a functional MRI study.","authors":"Uttam Kumar, Himanshu Raj Pandey, Kalpana Dhanik, Prakash Padakannaya","doi":"10.1007/s00429-025-02892-x","DOIUrl":"10.1007/s00429-025-02892-x","url":null,"abstract":"<p><p>In this investigation, we delve into the neural underpinnings of auditory processing of Sanskrit verse comprehension, an area not previously explored by neuroscientific research. Our study examines a diverse group of 44 bilingual individuals, including both proficient and non-proficient Sanskrit speakers, to uncover the intricate neural patterns involved in processing verses of this ancient language. Employing an integrated neuroimaging approach that combines functional connectivity-multivariate pattern analysis (fc-MVPA), voxel-based univariate analysis, seed-based connectivity analysis, and the use of sparse fMRI techniques to minimize the interference of scanner noise, we highlight the brain's adaptability and ability to integrate multiple types of information. Our findings from fc-MVPA reveal distinct connectivity patterns in proficient Sanskrit speakers, particularly involving the bilateral inferior temporal, left middle temporal, bilateral orbitofrontal, and bilateral occipital pole. Voxel-based univariate analysis showed significant activation in the right middle frontal gyrus, bilateral caudate nuclei, bilateral middle occipital gyri, left lingual gyrus, bilateral inferior parietal lobules, and bilateral inferior frontal gyri. Seed-based connectivity analysis further emphasizes the interconnected nature of the neural networks involved in language processing, demonstrating how these regions collaborate to support complex linguistic tasks. This research reveals how the brain processes the complex syntactic and semantic elements of Sanskrit verse. Findings indicate that proficient speakers effectively navigate intricate syntactic structures and semantic associations, engaging multiple brain regions in coordination. By examining the cognitive mechanisms underlying Sanskrit verse comprehension, which shares rhythmic and structural features with music and poetry, this study highlights the neural connections between language, culture, and cognition.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"28"},"PeriodicalIF":2.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gina Puska, Vivien Szendi, Máté Egyed, Diána Dimén, Melinda Cservenák, Árpád Dobolyi
{"title":"Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus.","authors":"Gina Puska, Vivien Szendi, Máté Egyed, Diána Dimén, Melinda Cservenák, Árpád Dobolyi","doi":"10.1007/s00429-024-02870-9","DOIUrl":"10.1007/s00429-024-02870-9","url":null,"abstract":"<p><p>The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv. Retrograde tract tracing identified various brain regions potentially influencing LSv neuronal activation through their projections. Among all, anterograde tract tracing confirmed that the posterior intralaminar thalamic nucleus (PIL), implicated in processing touch-related stimuli, targets the pup-activated region of the LSv. Moreover, nerve terminals containing the maternally induced PIL neuropeptide parathyroid hormone 2 (PTH2), were found to form synaptic connections with c-Fos activated LSv neurons using electron microscopy. Confirmation of PTH2 + PIL fibers projecting to LSv was achieved by retrograde tract tracing methods. Furthermore, double retrograde injections revealed that neurons within the PIL can project to both LSv and MPOA, suggesting their simultaneous regulation by PIL input. We also established that septal neurons activated by the pups in the mother are GABAergic and send inhibitory projections to the MPOA and other components of the maternal brain circuitry. This implies that the LSv and MPOA form an interconnected subcircuit in the maternal brain network, which is primarily driven by somatosensory input from the pups via the PIL PTH2 + neurons.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"27"},"PeriodicalIF":2.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean-Christophe Cassel, Elodie Panzer, Isabella Guimaraes-Olmo, Brigitte Cosquer, Anne Pereira de Vasconcelos, Aline Stephan
{"title":"Is there something sexual in the ventral midline thalamus?","authors":"Jean-Christophe Cassel, Elodie Panzer, Isabella Guimaraes-Olmo, Brigitte Cosquer, Anne Pereira de Vasconcelos, Aline Stephan","doi":"10.1007/s00429-024-02869-2","DOIUrl":"10.1007/s00429-024-02869-2","url":null,"abstract":"<p><p>This mini-review explores sexual dimorphism in the ventral midline thalamus, focusing on the reuniens nucleus and its role in behavioral functions. Traditionally linked to tasks such as working memory, cognitive flexibility, fear generalization, and memory consolidation, most studies have been conducted in male rodents. Research comparing the effects of ventral midline thalamus manipulations between female and male rodents is limited. Emerging evidence suggests sex-specific differences, particularly in response to stress, pharmacological manipulations, and memory processes. Studies reveal distinct c-Fos expression patterns in the reuniens nucleus between females and males, especially under stress, with females often showing different neural activation. Additionally, females exhibit different recruitment of the reuniens nucleus in object recognition tasks, indicating possible sex-dependent cognitive strategies. While evidence suggests functional differences between sexes in the reuniens nucleus, current data are limited. Further research is needed to understand how sex influences brain function and cognition, particularly in the ventral midline thalamus, which is crucial for various cognitive processes.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"26"},"PeriodicalIF":2.7,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}