Bone Research最新文献

筛选
英文 中文
Cell membrane vesicles derived from hBMSCs and hUVECs enhance bone regeneration 源自 hBMSCs 和 hUVECs 的细胞膜囊泡可促进骨再生
IF 12.7 1区 医学
Bone Research Pub Date : 2024-04-09 DOI: 10.1038/s41413-024-00325-9
Dandan Wang, Yaru Guo, Boon Chin Heng, Xuehui Zhang, Yan Wei, Ying He, Mingming Xu, Bin Xia, Xuliang Deng
{"title":"Cell membrane vesicles derived from hBMSCs and hUVECs enhance bone regeneration","authors":"Dandan Wang, Yaru Guo, Boon Chin Heng, Xuehui Zhang, Yan Wei, Ying He, Mingming Xu, Bin Xia, Xuliang Deng","doi":"10.1038/s41413-024-00325-9","DOIUrl":"https://doi.org/10.1038/s41413-024-00325-9","url":null,"abstract":"<p>Bone tissue renewal can be enhanced through co-transplantation of bone mesenchymal stem cells (BMSCs) and vascular endothelial cells (ECs). However, there are apparent limitations in stem cell-based therapy which hinder its clinic translation. Hence, we investigated the potential of alternative stem cell substitutes for facilitating bone regeneration. In this study, we successfully prepared cell membrane vesicles (CMVs) from BMSCs and ECs. The results showed that BMSC-derived cell membrane vesicles (BMSC-CMVs) possessed membrane receptors involved in juxtacrine signaling and growth factors derived from their parental cells. EC-derived cell membrane vesicles (EC-CMVs) also contained BMP2 and VEGF derived from their parental cells. BMSC-CMVs enhanced tube formation and migration ability of hUVECs, while EC-CMVs promoted the osteogenic differentiation of hBMSCs in vitro. Using a rat skull defect model, we found that co-transplantation of BMSC-CMVs and EC-CMVs could stimulate angiogenesis and bone formation in vivo. Therefore, our research might provide an innovative and feasible approach for cell-free therapy in bone tissue regeneration.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skeletal interoception in osteoarthritis 骨关节炎的骨骼截动
IF 12.7 1区 医学
Bone Research Pub Date : 2024-04-01 DOI: 10.1038/s41413-024-00328-6
Dinglong Yang, Jiawen Xu, Ke Xu, Peng Xu
{"title":"Skeletal interoception in osteoarthritis","authors":"Dinglong Yang, Jiawen Xu, Ke Xu, Peng Xu","doi":"10.1038/s41413-024-00328-6","DOIUrl":"https://doi.org/10.1038/s41413-024-00328-6","url":null,"abstract":"<p>The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism. Among its various forms, skeletal interoception specifically regulates the metabolic homeostasis of bones. Osteoarthritis (OA) is a complex joint disorder involving cartilage, subchondral bone, and synovium. The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads. Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone, resulting in subchondral bone sclerosis in OA. The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA. In this review, we offer a general overview of interoception, specifically skeletal interoception, subchondral bone microenviroment and the aberrant subchondral remedeling. We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA, as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pathogenic mechanism of syndactyly type V identified in a Hoxd13Q50R knock-in mice 在 Hoxd13Q50R 基因敲入小鼠中发现的综合畸形 V 型的致病机制
IF 12.7 1区 医学
Bone Research Pub Date : 2024-04-01 DOI: 10.1038/s41413-024-00322-y
Han Wang, Xiumin Chen, Xiaolu Meng, Yixuan Cao, Shirui Han, Keqiang Liu, Ximeng Zhao, Xiuli Zhao, Xue Zhang
{"title":"The pathogenic mechanism of syndactyly type V identified in a Hoxd13Q50R knock-in mice","authors":"Han Wang, Xiumin Chen, Xiaolu Meng, Yixuan Cao, Shirui Han, Keqiang Liu, Ximeng Zhao, Xiuli Zhao, Xue Zhang","doi":"10.1038/s41413-024-00322-y","DOIUrl":"https://doi.org/10.1038/s41413-024-00322-y","url":null,"abstract":"<p>Syndactyly type V (SDTY5) is an autosomal dominant extremity malformation characterized by fusion of the fourth and fifth metacarpals. In the previous publication, we first identified a heterozygous missense mutation Q50R in homeobox domain (HD) of <i>HOXD13</i> in a large Chinese family with SDTY5. In order to substantiate the pathogenicity of the variant and elucidate the underlying pathogenic mechanism causing limb malformation, transcription-activator-like effector nucleases (TALEN) was employed to generate a <i>Hoxd13</i>Q50R mutant mouse. The mutant mice exhibited obvious limb malformations including slight brachydactyly and partial syndactyly between digits 2–4 in the heterozygotes, and severe syndactyly, brachydactyly and polydactyly in homozygotes. Focusing on BMP2 and SHH/GREM1/AER-FGF epithelial mesenchymal (e-m) feedback, a crucial signal pathway for limb development, we found the ectopically expressed <i>Shh</i>, <i>Grem1</i> and <i>Fgf</i>8 and down-regulated <i>Bmp2</i> in the embryonic limb bud at E10.5 to E12.5. A transcriptome sequencing analysis was conducted on limb buds (LBs) at E11.5, revealing 31 genes that exhibited notable disparities in mRNA level between the <i>Hoxd13</i>Q50R homozygotes and the wild-type. These genes are known to be involved in various processes such as limb development, cell proliferation, migration, and apoptosis. Our findings indicate that the ectopic expression of <i>Shh</i> and <i>Fgf8</i>, in conjunction with the down-regulation of <i>Bmp2</i>, results in a failure of patterning along both the anterior-posterior and proximal-distal axes, as well as a decrease in interdigital programmed cell death (PCD). This cascade ultimately leads to the development of syndactyly and brachydactyly in heterozygous mice, and severe limb malformations in homozygous mice. These findings suggest that abnormal expression of <i>SHH, FGF8</i>, and <i>BMP2</i> induced by <i>HOXD13</i>Q50R may be responsible for the manifestation of human SDTY5.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piezo1 channel exaggerates ferroptosis of nucleus pulposus cells by mediating mechanical stress-induced iron influx Piezo1 通道通过介导机械应力诱导的铁流入,加剧了髓核细胞的铁沉着病
IF 12.7 1区 医学
Bone Research Pub Date : 2024-03-29 DOI: 10.1038/s41413-024-00317-9
Ziqian Xiang, Pengfei Zhang, Chunwang Jia, Rongkun Xu, Dingren Cao, Zhaoning Xu, Tingting Lu, Jingwei Liu, Xiaoxiong Wang, Cheng Qiu, Wenyang Fu, Weiwei Li, Lei Cheng, Qiang Yang, Shiqing Feng, Lianlei Wang, Yunpeng Zhao, Xinyu Liu
{"title":"Piezo1 channel exaggerates ferroptosis of nucleus pulposus cells by mediating mechanical stress-induced iron influx","authors":"Ziqian Xiang, Pengfei Zhang, Chunwang Jia, Rongkun Xu, Dingren Cao, Zhaoning Xu, Tingting Lu, Jingwei Liu, Xiaoxiong Wang, Cheng Qiu, Wenyang Fu, Weiwei Li, Lei Cheng, Qiang Yang, Shiqing Feng, Lianlei Wang, Yunpeng Zhao, Xinyu Liu","doi":"10.1038/s41413-024-00317-9","DOIUrl":"https://doi.org/10.1038/s41413-024-00317-9","url":null,"abstract":"<p>To date, several molecules have been found to facilitate iron influx, while the types of iron influx channels remain to be elucidated. Here, Piezo1 channel was identified as a key iron transporter in response to mechanical stress. Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells (NPCs). Importantly, Piezo1-induced iron influx was independent of the transferrin receptor (TFRC), a well-recognized iron gatekeeper. Furthermore, pharmacological inactivation of Piezo1 profoundly reduced iron accumulation, alleviated mitochondrial ROS, and suppressed ferroptotic alterations in stimulation of mechanical stress. Moreover, conditional knockout of Piezo1 (<i>Col2a1-CreERT Piezo1</i><sup><i>flox/flox</i></sup>) attenuated the mechanical injury-induced intervertebral disc degeneration (IVDD). Notably, the protective effect of Piezo1 deficiency in IVDD was dampened in <i>Piezo1/Gpx4</i> conditional double knockout (cDKO) mice (<i>Col2a1-CreERT Piezo1</i><sup><i>flox/flox</i></sup><i>/Gpx4</i><sup><i>flox/flox</i></sup>). These findings suggest that Piezo1 is a potential determinant of iron influx, indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kdm6a-CNN1 axis orchestrates epigenetic control of trauma-induced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair Kdm6a-CNN1 轴协调创伤诱导的脊髓微血管内皮细胞衰老的表观遗传学控制,以平衡神经炎症,改善神经系统修复
IF 12.7 1区 医学
Bone Research Pub Date : 2024-03-25 DOI: 10.1038/s41413-024-00323-x
Chengjun Li, Tian Qin, Jinyun Zhao, Yuxin Jin, Yiming Qin, Rundong He, Tianding Wu, Chunyue Duan, Liyuan Jiang, Feifei Yuan, Hongbin Lu, Yong Cao, Jianzhong Hu
{"title":"Kdm6a-CNN1 axis orchestrates epigenetic control of trauma-induced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair","authors":"Chengjun Li, Tian Qin, Jinyun Zhao, Yuxin Jin, Yiming Qin, Rundong He, Tianding Wu, Chunyue Duan, Liyuan Jiang, Feifei Yuan, Hongbin Lu, Yong Cao, Jianzhong Hu","doi":"10.1038/s41413-024-00323-x","DOIUrl":"https://doi.org/10.1038/s41413-024-00323-x","url":null,"abstract":"<p>Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors. Despite extensive investigations into vascular senescence associated with aging and degenerative diseases, the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress, particularly its involvement in senescence-induced inflammation, remain insufficiently elucidated. In this study, we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury (SCI). Lysine demethylase 6A (Kdm6a), commonly known as UTX, emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells (SCMECs). Upregulation of UTX induces senescence in SCMECs, leading to an amplified release of proinflammatory factors, specifically the senescence-associated secretory phenotype (SASP) components, thereby modulating the inflammatory microenvironment. Conversely, the deletion of UTX in endothelial cells shields SCMECs against senescence, mitigates the release of proinflammatory SASP factors, and promotes neurological functional recovery after SCI. UTX forms an epigenetic regulatory axis by binding to calponin 1 (CNN1), orchestrating trauma-induced SCMECs senescence and SASP secretion, thereby influencing neuroinflammation and neurological functional repair. Furthermore, local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion, reinstating a local regenerative microenvironment and enhancing functional repair after SCI. In conclusion, targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion, alleviate neuroinflammation, and provide a novel treatment strategy for SCI repair.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140209679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture β-受体阻滞剂可增强骨质疏松性骨折后 PTH 的合成代谢作用
IF 12.7 1区 医学
Bone Research Pub Date : 2024-03-21 DOI: 10.1038/s41413-024-00321-z
Jie Huang, Tong Wu, Yi-Rong Jiang, Xuan-Qi Zheng, Huan Wang, Hao Liu, Hong Wang, Hui-Jie Leng, Dong-Wei Fan, Wan-Qiong Yuan, Chun-Li Song
{"title":"β-Receptor blocker enhances the anabolic effect of PTH after osteoporotic fracture","authors":"Jie Huang, Tong Wu, Yi-Rong Jiang, Xuan-Qi Zheng, Huan Wang, Hao Liu, Hong Wang, Hui-Jie Leng, Dong-Wei Fan, Wan-Qiong Yuan, Chun-Li Song","doi":"10.1038/s41413-024-00321-z","DOIUrl":"https://doi.org/10.1038/s41413-024-00321-z","url":null,"abstract":"<p>The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the β-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of <i>Rankl</i> and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene <i>Bmal1</i>, which was inhibited by NE-βAR signaling. <i>Bmal1</i> knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair. HIF-1α/PLOD2轴整合了细胞外基质组织和细胞代谢,导致肌肉骨骼修复失常。
IF 12.7 1区 医学
Bone Research Pub Date : 2024-03-12 DOI: 10.1038/s41413-024-00320-0
Heeseog Kang, Amy L Strong, Yuxiao Sun, Lei Guo, Conan Juan, Alec C Bancroft, Ji Hae Choi, Chase A Pagani, Aysel A Fernandes, Michael Woodard, Juhoon Lee, Sowmya Ramesh, Aaron W James, David Hudson, Kevin N Dalby, Lin Xu, Robert J Tower, Benjamin Levi
{"title":"The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair.","authors":"Heeseog Kang, Amy L Strong, Yuxiao Sun, Lei Guo, Conan Juan, Alec C Bancroft, Ji Hae Choi, Chase A Pagani, Aysel A Fernandes, Michael Woodard, Juhoon Lee, Sowmya Ramesh, Aaron W James, David Hudson, Kevin N Dalby, Lin Xu, Robert J Tower, Benjamin Levi","doi":"10.1038/s41413-024-00320-0","DOIUrl":"10.1038/s41413-024-00320-0","url":null,"abstract":"<p><p>While hypoxic signaling has been shown to play a role in many cellular processes, its role in metabolism-linked extracellular matrix (ECM) organization and downstream processes of cell fate after musculoskeletal injury remains to be determined. Heterotopic ossification (HO) is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues. Hypoxia and hypoxia-inducible factor 1α (HIF-1α) activation have been shown to promote HO. However, the underlying molecular mechanisms by which the HIF-1α pathway in mesenchymal progenitor cells (MPCs) contributes to pathologic bone formation remain to be elucidated. Here, we used a proven mouse injury-induced HO model to investigate the role of HIF-1α on aberrant cell fate. Using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analyses of the HO site, we found that collagen ECM organization is the most highly up-regulated biological process in MPCs. Zeugopod mesenchymal cell-specific deletion of Hif1α (Hoxa11-CreER<sup>T2</sup>; Hif1a<sup>fl/fl</sup>) significantly mitigated HO in vivo. ScRNA-seq analysis of these Hoxa11-CreER<sup>T2</sup>; Hif1a<sup>fl/fl</sup> mice identified the PLOD2/LOX pathway for collagen cross-linking as downstream of the HIF-1α regulation of HO. Importantly, our scRNA-seq data and mechanistic studies further uncovered that glucose metabolism in MPCs is most highly impacted by HIF-1α deletion. From a translational aspect, a pan-LOX inhibitor significantly decreased HO. A newly screened compound revealed that the inhibition of PLOD2 activity in MPCs significantly decreased osteogenic differentiation and glycolytic metabolism. This suggests that the HIF-1α/PLOD2/LOX axis linked to metabolism regulates HO-forming MPC fate. These results suggest that the HIF-1α/PLOD2/LOX pathway represents a promising strategy to mitigate HO formation.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain 大脑通过 PGE2 骨骼交感神经调节负重骨骼:对踝关节骨关节炎和疼痛的影响
IF 12.7 1区 医学
Bone Research Pub Date : 2024-03-05 DOI: 10.1038/s41413-024-00316-w
Feng Gao, Qimiao Hu, Wenwei Chen, Jilong Li, Cheng Qi, Yiwen Yan, Cheng Qian, Mei Wan, James Ficke, Junying Zheng, Xu Cao
{"title":"Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain","authors":"Feng Gao, Qimiao Hu, Wenwei Chen, Jilong Li, Cheng Qi, Yiwen Yan, Cheng Qian, Mei Wan, James Ficke, Junying Zheng, Xu Cao","doi":"10.1038/s41413-024-00316-w","DOIUrl":"https://doi.org/10.1038/s41413-024-00316-w","url":null,"abstract":"<p>Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone prostaglandin E2 (PGE2) concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of <i>cyclooxygenase-2 (COX2)</i> in the osteoblast lineage cells or knockout of receptor 4 (<i>EP4)</i> in sensory nerve blunts bone formation in response to mechanical loading. Moreover, knockout of <i>TrkA</i> in sensory nerve also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces cAMP-response element binding protein (CREB) phosphorylation in the hypothalamic arcuate nucleus (ARC) to inhibit sympathetic tyrosine hydroxylase (TH) expression in the paraventricular nucleus (PVN) for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted knockdown of PGAM5 in synovial macrophages efficiently alleviates osteoarthritis. 靶向敲除滑膜巨噬细胞中的 PGAM5 能有效缓解骨关节炎。
IF 12.7 1区 医学
Bone Research Pub Date : 2024-03-04 DOI: 10.1038/s41413-024-00318-8
Yuhang Liu, Ruihan Hao, Jia Lv, Jie Yuan, Xuelei Wang, Churong Xu, Ding Ma, Zhouyi Duan, Bingjun Zhang, Liming Dai, Yiyun Cheng, Wei Lu, Xiaoling Zhang
{"title":"Targeted knockdown of PGAM5 in synovial macrophages efficiently alleviates osteoarthritis.","authors":"Yuhang Liu, Ruihan Hao, Jia Lv, Jie Yuan, Xuelei Wang, Churong Xu, Ding Ma, Zhouyi Duan, Bingjun Zhang, Liming Dai, Yiyun Cheng, Wei Lu, Xiaoling Zhang","doi":"10.1038/s41413-024-00318-8","DOIUrl":"10.1038/s41413-024-00318-8","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA. These attempts involve repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium. In this study, we found that phosphoglycerate mutase 5 (PGAM5) significantly increased in macrophages in OA synovium compared to controls based on histology of human samples and single-cell RNA sequencing results of mice models. To address the role of PGAM5 in macrophages in OA, we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms and promoted anabolic metabolism of chondrocytes in vitro and in vivo. Mechanistically, we found that PGAM5 enhanced M1 polarization via AKT-mTOR/p38/ERK pathways, whereas inhibited M2 polarization via STAT6-PPARγ pathway in murine bone marrow-derived macrophages. Furthermore, we found that PGAM5 directly dephosphorylated Dishevelled Segment Polarity Protein 2 (DVL2) which resulted in the inhibition of β-catenin and repolarization of M2 macrophages into M1 macrophages. Conditional knockout of both PGAM5 and β-catenin in macrophages significantly exacerbated osteoarthritis compared to PGAM5-deficient mice. Motivated by these findings, we successfully designed mannose modified fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection, which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis. Collectively, these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into novel macrophage-targeted strategy for treating OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis 基于 DNA 四面体的铁突变抑制纳米粒子:卓越的姜黄素输送能力和糖尿病骨质疏松症的缓解作用
IF 12.7 1区 医学
Bone Research Pub Date : 2024-02-29 DOI: 10.1038/s41413-024-00319-7
Yong Li, Zhengwen Cai, Wenjuan Ma, Long Bai, En Luo, Yunfeng Lin
{"title":"A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis","authors":"Yong Li, Zhengwen Cai, Wenjuan Ma, Long Bai, En Luo, Yunfeng Lin","doi":"10.1038/s41413-024-00319-7","DOIUrl":"https://doi.org/10.1038/s41413-024-00319-7","url":null,"abstract":"<p>Diabetic osteoporosis (DOP) is a significant complication that poses continuous threat to the bone health of patients with diabetes; however, currently, there are no effective treatment strategies. In patients with diabetes, the increased levels of ferroptosis affect the osteogenic commitment and differentiation of bone mesenchymal stem cells (BMSCs), leading to significant skeletal changes. To address this issue, we aimed to target ferroptosis and propose a novel therapeutic approach for the treatment of DOP. We synthesized ferroptosis-suppressing nanoparticles, which could deliver curcumin, a natural compound, to the bone marrow using tetrahedral framework nucleic acid (tFNA). This delivery system demonstrated excellent curcumin bioavailability and stability, as well as synergistic properties with tFNA. Both in vitro and in vivo experiments revealed that nanoparticles could enhance mitochondrial function by activating the nuclear factor E2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4) pathway, inhibiting ferroptosis, promoting the osteogenic differentiation of BMSCs in the diabetic microenvironment, reducing trabecular loss, and increasing bone formation. These findings suggest that curcumin-containing DNA tetrahedron-based ferroptosis-suppressing nanoparticles have a promising potential for the treatment of DOP and other ferroptosis-related diseases.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139994220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信