Bone ResearchPub Date : 2024-11-11DOI: 10.1038/s41413-024-00366-0
Xiaomeng You, Jing Yan, Jeremy Herzog, Sabah Nobakhti, Ross Campbell, Allison Hoke, Rasha Hammamieh, R. Balfour Sartor, Sandra Shefelbine, Melissa A. Kacena, Nabarun Chakraborty, Julia F. Charles
{"title":"Bone loss with aging is independent of gut microbiome in mice","authors":"Xiaomeng You, Jing Yan, Jeremy Herzog, Sabah Nobakhti, Ross Campbell, Allison Hoke, Rasha Hammamieh, R. Balfour Sartor, Sandra Shefelbine, Melissa A. Kacena, Nabarun Chakraborty, Julia F. Charles","doi":"10.1038/s41413-024-00366-0","DOIUrl":"https://doi.org/10.1038/s41413-024-00366-0","url":null,"abstract":"<p>Emerging evidence suggests a significant role of gut microbiome in bone health. Aging is well recognized as a crucial factor influencing the gut microbiome. In this study, we investigated whether age-dependent microbial change contributes to age-related bone loss in CB6F1 mice. The bone phenotype of 24-month-old germ-free (GF) mice was indistinguishable compared to their littermates colonized by fecal transplant at 1-month-old. Moreover, bone loss from 3 to 24-month-old was comparable between GF and specific pathogen-free (SPF) mice. Thus, GF mice were not protected from age-related bone loss. 16S rRNA gene sequencing of fecal samples from 3-month and 24-month-old SPF males indicated an age-dependent microbial shift with an alteration in energy and nutrient metabolism potential. An integrative analysis of 16S predicted metagenome function and LC-MS fecal metabolome revealed an enrichment of protein and amino acid biosynthesis pathways in aged mice. Microbial S-adenosyl methionine metabolism was increased in the aged mice, which has previously been associated with the host aging process. Collectively, aging caused microbial taxonomic and functional alteration in mice. To demonstrate the functional importance of young and old microbiome to bone, we colonized GF mice with fecal microbiome from 3-month or 24-month-old SPF donor mice for 1 and 8 months. The effect of microbial colonization on bone phenotypes was independent of the microbiome donors’ age. In conclusion, our study indicates age-related bone loss occurs independent of gut microbiome.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone ResearchPub Date : 2024-11-08DOI: 10.1038/s41413-024-00371-3
Wenkai Shao, Bo Wang, Ping Wang, Shuo Zhang, Song Gong, Xiaodong Guo, Deyu Duan, Zengwu Shao, Weijian Liu, Lei He, Fei Gao, Xiao Lv, Yong Feng
{"title":"Inhibition of sympathetic tone via hypothalamic descending pathway propagates glucocorticoid-induced endothelial impairment and osteonecrosis of the femoral head","authors":"Wenkai Shao, Bo Wang, Ping Wang, Shuo Zhang, Song Gong, Xiaodong Guo, Deyu Duan, Zengwu Shao, Weijian Liu, Lei He, Fei Gao, Xiao Lv, Yong Feng","doi":"10.1038/s41413-024-00371-3","DOIUrl":"https://doi.org/10.1038/s41413-024-00371-3","url":null,"abstract":"<p>Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH. GCs activate the glucocorticoid receptor (GR) but hinder the activation of the mineralocorticoid receptor (MR) on neurons in the hypothalamic paraventricular nucleus (PVN). This disrupts the balance of corticosteroid receptors (GR/MR) and subsequently reduces the sympathetic outflow in the PVN. Vascular endothelial cells rapidly react to inhibition of sympathetic tone by provoking endothelial apoptosis in adult male mice treated with methylprednisolone (MPS) daily for 3 days, and we find substantially reduced H-type vessels in the femoral heads of MPS-treated ONFH mice. Importantly, treatment with a GR inhibitor (RU486) in the PVN promotes the activation of MR and rebalances the ratio of GR and MR, thus effectively boosting sympathetic outflow, as shown by an increase in tyrosine hydroxylase expression in both the PVN and the sympathetic postganglionic neurons and an increase in norepinephrine levels in both the serum and bone marrow of the femoral head of MPS-treated mice. Rebalancing the corticosteroid receptors mitigates GC-induced endothelial impairment and ONFH and promotes angiogenesis coupled with osteogenesis in the femoral head, while these effects are abolished by chemical sympathectomy with 6-OHDA or adrenergic receptor-β2 (Adrb2) knockout. Furthermore, activating Adrb2 signaling in vivo is sufficient to rescue the GC-induced ONFH phenotype. Mechanistically, norepinephrine increases the expression of the key glycolytic gene 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) via Adrb2-cyclic AMP response element-binding protein (CREB) signaling. Endothelial-specific overexpression of PFKFB3 attenuates endothelial impairment and prevents severe osteonecrosis in MPS-treated Adrb2 knockout mice. Thus, GC inhibits sympathetic tone via the hypothalamic descending pathway, which, in turn, acts as a mediator of GC-induced ONFH.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IRF1-mediated upregulation of PARP12 promotes cartilage degradation by inhibiting PINK1/Parkin dependent mitophagy through ISG15 attenuating ubiquitylation and SUMOylation of MFN1/2.","authors":"Zengfa Deng, Dianbo Long, Changzhao Li, Hailong Liu, Wei Li, Yanlin Zhong, Xiaolin Mo, Ruiyun Li, Zibo Yang, Yan Kang, Guping Mao","doi":"10.1038/s41413-024-00363-3","DOIUrl":"10.1038/s41413-024-00363-3","url":null,"abstract":"<p><p>Osteoarthritis (OA) is an age-related cartilage-degenerating joint disease. Mitochondrial dysfunction has been reported to promote the development of OA. Poly (ADP-ribose) polymerase family member 12 (PARP12) is a key regulator of mitochondrial function, protein translation, and inflammation. However, the role of PARP12 in OA-based cartilage degradation and the underlying mechanisms are relatively unknown. Here, we first demonstrated that PARP12 inhibits mitophagy and promotes OA progression in human OA cartilage and a monosodium iodoacetate-induced rat OA model. Using mass spectrometry and co-immunoprecipitation assay, PARP12 was shown to interact with ISG15, upregulate mitofusin 1 and 2 (MFN1/2) ISGylation, which downregulated MFN1/2 ubiquitination and SUMOylation, thereby inhibiting PINK1/Parkin-dependent chondrocyte mitophagy and promoting cartilage degradation. Moreover, inflammatory cytokine-induced interferon regulatory factor 1 (IRF1) activation was required for the upregulation of PARP12 expression, and it directly bound to the PARP12 promoter to activate transcription. XAV-939 inhibited PARP12 expression and suppressed OA pathogenesis in vitro and in vivo. Clinically, PARP12 can be used to predict the severity of OA; thus, it represents a new target for the study of mitophagy and OA progression. In brief, the IRF1-mediated upregulation of PARP12 promoted cartilage degradation by inhibiting PINK1/Parkin-dependent mitophagy via ISG15-based attenuation of MFN1/2 ubiquitylation and SUMOylation. Our data provide new insights into the molecular mechanisms underlying PARP12-based regulation of mitophagy and can facilitate the development of therapeutic strategies for the treatment of OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone ResearchPub Date : 2024-10-18DOI: 10.1038/s41413-024-00362-4
Bilal M. El-Masri, Christina M. Andreasen, Kaja S. Laursen, Viktoria B. Kofod, Xenia G. Dahl, Malene H. Nielsen, Jesper S. Thomsen, Annemarie Brüel, Mads S. Sørensen, Lars J. Hansen, Albert S. Kim, Victoria E. Taylor, Caitlyn Massarotti, Michelle M. McDonald, Xiaomeng You, Julia F. Charles, Jean-Marie Delaisse, Thomas L. Andersen
{"title":"Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect","authors":"Bilal M. El-Masri, Christina M. Andreasen, Kaja S. Laursen, Viktoria B. Kofod, Xenia G. Dahl, Malene H. Nielsen, Jesper S. Thomsen, Annemarie Brüel, Mads S. Sørensen, Lars J. Hansen, Albert S. Kim, Victoria E. Taylor, Caitlyn Massarotti, Michelle M. McDonald, Xiaomeng You, Julia F. Charles, Jean-Marie Delaisse, Thomas L. Andersen","doi":"10.1038/s41413-024-00362-4","DOIUrl":"https://doi.org/10.1038/s41413-024-00362-4","url":null,"abstract":"<p>Denosumab is a monoclonal anti-RANKL antibody that inhibits bone resorption, increases bone mass, and reduces fracture risk. Denosumab discontinuation causes an extensive wave of rebound resorption, but the cellular mechanisms remain poorly characterized. We utilized in situ hybridization (ISH) as a direct approach to identify the cells that activate osteoclastogenesis through the RANKL/OPG pathway. ISH was performed across species, skeletal sites, and following recombinant OPG (OPG:Fc) and parathyroid hormone 1–34 (PTH) treatment of mice. OPG:Fc treatment in mice induced an increased expression of RANKL mRNA mainly in trabecular, but not endocortical bone surface cells. Additionally, a decreased expression of OPG mRNA was detected in bone surface cells and osteocytes of both compartments. A similar but more pronounced effect on RANKL and OPG expression was seen one hour after PTH treatment. These findings suggest that bone surface cells and osteocytes conjointly regulate the activation of osteoclastogenesis, and that OPG:Fc treatment induces a local accumulation of osteoclastogenic activation sites, ready to recruit and activate osteoclasts upon treatment discontinuation. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data from murine bone marrow stromal cells revealed that <i>Tnfsf11</i><sup>+</sup> cells expressed high levels of <i>Mmp13</i>, <i>Limch1</i>, and <i>Wif1</i>, confirming their osteoprogenitor status. ISH confirmed co-expression of <i>Mmp13</i> and <i>Tnfsf11</i> in bone surface cells of both vehicle- and OPG:Fc-treated mice. Under physiological conditions of human/mouse bone, RANKL is expressed mainly by osteoprogenitors proximate to the osteoclasts, while OPG is expressed mainly by osteocytes and bone-forming osteoblasts.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Osteopetrosis-like disorders induced by osteoblast-specific retinoic acid signaling inhibition in mice","authors":"Siyuan Sun, Yuanqi Liu, Jiping Sun, Bingxin Zan, Yiwen Cui, Anting Jin, Hongyuan Xu, Xiangru Huang, Yanfei Zhu, Yiling Yang, Xin Gao, Tingwei Lu, Xinyu Wang, Jingyi Liu, Li Mei, Lei Shen, Qinggang Dai, Lingyong Jiang","doi":"10.1038/s41413-024-00353-5","DOIUrl":"https://doi.org/10.1038/s41413-024-00353-5","url":null,"abstract":"<p>Osteopetrosis is an inherited metabolic disease, characterized by increased bone density and narrow marrow cavity. Patients with severe osteopetrosis exhibit abnormal bone brittleness, anemia, and infection complications, which commonly cause death within the first decade of life. Pathologically, osteopetrosis impairs not only the skeletal system, but also the hemopoietic and immune systems during development, while the underlying osteoimmunological mechanisms remain unclear. Osteoclastic mutations are regarded as the major causes of osteopetrosis, while osteoclast non-autonomous theories have been proposed in recent years with unclear underlying mechanisms. Retinoic acid (RA), the metabolite of Vitamin A, is an essential requirement for skeletal and hematopoietic development, through the activation of retinoic acid signaling. RA can relieve osteopetrosis symptoms in some animal models, while its effect on bone health is still controversial and the underlying mechanisms remain unclear. In this study, we constructed an osteoblast-specific inhibitory retinoic acid signaling mouse model and surprisingly found it mimicked the symptoms of osteopetrosis found in clinical cases: dwarfism, increased imperfectly-formed trabecular bone deposition with a reduced marrow cavity, thin cortical bone with a brittle skeleton, and hematopoietic and immune dysfunction. Micro-CT, the three-point bending test, and histological analysis drew a landscape of poor bone quality. Single-cell RNA sequencing (scRNA-seq) of the femur and RNA-seq of osteoblasts uncovered an atlas of pathological skeletal metabolism dysfunction in the mutant mice showing that osteogenesis was impaired in a cell-autonomous manner and osteoclastogenesis was impaired via osteoblast-osteoclast crosstalk. Moreover, scRNA-seq of bone marrow and flow cytometry of peripheral blood, spleen, and bone marrow uncovered pathology in the hematopoietic and immune systems in the mutant mice, mimicking human osteopetrosis. Results showed that hematopoietic progenitors and B lymphocyte differentiation were affected and the osteoblast-dominated cell crosstalk was impaired, which may result from transcriptional impairment of the ligands <i>Pdgfd</i> and <i>Sema4d</i>. In summary, we uncovered previously unreported pathogenesis of osteopetrosis-like disorder in mice with skeletal, hematopoietic, and immune system dysfunction, which was induced by the inhibition of retinoic acid signaling in osteoblasts, and sheds new insights into a potential treatment for osteopetrosis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A monoallelic variant in CCN2 causes an autosomal dominant spondyloepimetaphyseal dysplasia with low bone mass","authors":"Shanshan Li, Rui Shao, Shufa Li, Jiao Zhao, Qi Deng, Ping Li, Zhanying Wei, Shuqin Xu, Lin Chen, Baojie Li, Weiguo Zou, Zhenlin Zhang","doi":"10.1038/s41413-024-00364-2","DOIUrl":"https://doi.org/10.1038/s41413-024-00364-2","url":null,"abstract":"<p>Cellular communication network factor 2 (CCN2) is a secreted extracellular matrix-associated protein, and its aberrantly increased expression has been implicated in a diversity of diseases involving pathological processes of fibrosis, chronic inflammation, or tissue injury, which has promoted the evaluation of CCN2 as therapeutic targets for multiple disorders. However, human phenotypes associated with CCN2 deficiency have remained enigmatic; variants in <i>CCN2</i> have not yet been associated with a human phenotype. Here, we collected families diagnosed with spondyloepimetaphyseal dysplasia (SEMD), and screened candidate pathogenic genes for families without known genetic causes using next-generation sequencing. We identified a monoallelic variant in signal peptide of <i>CCN2</i> (NM_001901.2: c.65 G > C [p.Arg22Pro]) as the cause of SEMD in 14 subjects presenting with different degree of short stature, premature osteoarthritis, and osteoporosis. Affected subjects showed decreased serum CCN2 levels. Cell lines harboring the variant displayed decreased amount of CCN2 proteins in culture medium and an increased intracellular retention, indicating impaired protein secretion. And the variant weakened the stimulation effect of CCN2 on osteogenesis of bone marrow mesenchymal stem cells. Zebrafish <i>ccn2a</i> knockout model and osteoblast lineage-specific <i>Ccn2</i>-deficient mice (<i>Ccn2</i><sup><i>fl/fl</i></sup><i>;Prx1</i><sup><i>Cre</i></sup>) partially recapitulated the phenotypes including low bone mass observed in affected subjects. Pathological mechanism implicated in the skeletal abnormality in <i>Ccn2</i><sup><i>fl/fl</i></sup><i>;Prx1</i><sup><i>Cre</i></sup> mice involved decreased bone formation, increased bone resorption, and abnormal growth plate formation. Collectively, our study indicate that monoallelic variants in <i>CCN2</i> lead to a human inherited skeletal dysplasia, and highlight the critical role of CCN2 in osteogenesis in human.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone ResearchPub Date : 2024-10-15DOI: 10.1038/s41413-024-00370-4
Renpeng Zhou, Weirong Hu, Peter X. Ma, Chuan-ju Liu
{"title":"Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases","authors":"Renpeng Zhou, Weirong Hu, Peter X. Ma, Chuan-ju Liu","doi":"10.1038/s41413-024-00370-4","DOIUrl":"https://doi.org/10.1038/s41413-024-00370-4","url":null,"abstract":"<p>Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone ResearchPub Date : 2024-10-15DOI: 10.1038/s41413-024-00361-5
Ziyan Wang, Minmin Lin, Yonghao Pan, Yang Liu, Chengyu Yang, Jianqun Wu, Yan Wang, Bingtong Yan, Jingjing Zhou, Rouxi Chen, Chao Liu
{"title":"Periostin+ myeloid cells improved long bone regeneration in a mechanosensitive manner","authors":"Ziyan Wang, Minmin Lin, Yonghao Pan, Yang Liu, Chengyu Yang, Jianqun Wu, Yan Wang, Bingtong Yan, Jingjing Zhou, Rouxi Chen, Chao Liu","doi":"10.1038/s41413-024-00361-5","DOIUrl":"https://doi.org/10.1038/s41413-024-00361-5","url":null,"abstract":"<p>Myeloid cells are pivotal in the inflammatory and remodeling phases of fracture repair. Here, we investigate the effect of periostin expressed by myeloid cells on bone regeneration in a monocortical tibial defect (MTD) model. In this study, we show that periostin is expressed by periosteal myeloid cells, primarily the M2 macrophages during bone regeneration. Knockout of periostin in myeloid cells reduces cortical bone thickness, disrupts trabecular bone connectivity, impairs repair impairment, and hinders M2 macrophage polarization. Mechanical stimulation is a regulator of periostin in macrophages. By activating transforming growth factor-β (TGF-β), it increases periostin expression in macrophages and induces M2 polarization. This mechanosensitive effect also reverses the delayed bone repair induced by periostin deficiency in myeloid cells by strengthening the angiogenesis-osteogenesis coupling. In addition, transplantation of mechanically conditioned macrophages into the periosteum over a bone defect results in substantially enhanced repair, confirming the critical role of macrophage-secreted periostin in bone repair. In summary, our findings suggest that mechanical stimulation regulates periostin expression and promotes M2 macrophage polarization, highlighting the potential of mechanically conditioned macrophages as a therapeutic strategy for enhancing bone repair.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone ResearchPub Date : 2024-10-11DOI: 10.1038/s41413-024-00374-0
Joshua C. Bertels, Guangxu He, Fanxin Long
{"title":"Metabolic reprogramming in skeletal cell differentiation","authors":"Joshua C. Bertels, Guangxu He, Fanxin Long","doi":"10.1038/s41413-024-00374-0","DOIUrl":"https://doi.org/10.1038/s41413-024-00374-0","url":null,"abstract":"<p>The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bone ResearchPub Date : 2024-09-29DOI: 10.1038/s41413-024-00347-3
Yasmine Hachemi, Simon Perrin, Maria Ethel, Anais Julien, Julia Vettese, Blandine Geisler, Christian Göritz, Céline Colnot
{"title":"Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma","authors":"Yasmine Hachemi, Simon Perrin, Maria Ethel, Anais Julien, Julia Vettese, Blandine Geisler, Christian Göritz, Céline Colnot","doi":"10.1038/s41413-024-00347-3","DOIUrl":"https://doi.org/10.1038/s41413-024-00347-3","url":null,"abstract":"<p>Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single-nucleus transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as a driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}