Bone Research最新文献

筛选
英文 中文
Induction of osteoblast apoptosis stimulates macrophage efferocytosis and paradoxical bone formation 诱导成骨细胞凋亡刺激巨噬细胞排泄和矛盾骨形成
IF 12.7 1区 医学
Bone Research Pub Date : 2024-08-05 DOI: 10.1038/s41413-024-00341-9
Lena Batoon, Amy Jean Koh, Susan Marie Millard, Jobanpreet Grewal, Fang Ming Choo, Rahasudha Kannan, Aysia Kinnaird, Megan Avey, Tatyana Teslya, Allison Robyn Pettit, Laurie K. McCauley, Hernan Roca
{"title":"Induction of osteoblast apoptosis stimulates macrophage efferocytosis and paradoxical bone formation","authors":"Lena Batoon, Amy Jean Koh, Susan Marie Millard, Jobanpreet Grewal, Fang Ming Choo, Rahasudha Kannan, Aysia Kinnaird, Megan Avey, Tatyana Teslya, Allison Robyn Pettit, Laurie K. McCauley, Hernan Roca","doi":"10.1038/s41413-024-00341-9","DOIUrl":"https://doi.org/10.1038/s41413-024-00341-9","url":null,"abstract":"<p>Apoptosis is crucial for tissue homeostasis and organ development. In bone, apoptosis is recognized to be a main fate of osteoblasts, yet the relevance of this process remains underexplored. Using our murine model with inducible Caspase 9, the enzyme that initiates intrinsic apoptosis, we triggered apoptosis in a proportion of mature osteocalcin (OCN<sup>+</sup>) osteoblasts and investigated the impact on postnatal bone development. Osteoblast apoptosis stimulated efferocytosis by osteal macrophages. A five-week stimulation of OCN<sup>+</sup> osteoblast apoptosis in 3-week-old male and female mice significantly enhanced vertebral bone formation while increasing osteoblast precursors. A similar treatment regimen to stimulate osterix<sup>+</sup> cell apoptosis had no impact on bone volume or density. The vertebral bone accrual following stimulation of OCN<sup>+</sup> osteoblast apoptosis did not translate in improved mechanical strength due to disruption of the lacunocanalicular network. The observed bone phenotype was not influenced by changes in osteoclasts but was associated with stimulation of macrophage efferocytosis and vasculature formation. Phenotyping of efferocytic macrophages revealed a unique transcriptomic signature and expression of factors including VEGFA. To examine whether macrophages participated in the osteoblast precursor increase following osteoblast apoptosis, macrophage depletion models were employed. Depletion of macrophages via clodronate-liposomes and the CD169-diphtheria toxin receptor mouse model resulted in marked reduction in leptin receptor<sup>+</sup> and osterix<sup>+</sup> osteoblast precursors. Collectively, this work demonstrates the significance of osteoblast turnover via apoptosis and efferocytosis in postnatal bone formation. Importantly, it exposes the potential of targeting this mechanism to promote bone anabolism in the clinical setting.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system 与衰老有关的骨骼和免疫变化:骨骼和免疫系统之间复杂相互作用的启示
IF 12.7 1区 医学
Bone Research Pub Date : 2024-08-05 DOI: 10.1038/s41413-024-00346-4
Bobin Mi, Yuan Xiong, Samuel Knoedler, Michael Alfertshofer, Adriana C. Panayi, Haixing Wang, Sien Lin, Gang Li, Guohui Liu
{"title":"Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system","authors":"Bobin Mi, Yuan Xiong, Samuel Knoedler, Michael Alfertshofer, Adriana C. Panayi, Haixing Wang, Sien Lin, Gang Li, Guohui Liu","doi":"10.1038/s41413-024-00346-4","DOIUrl":"https://doi.org/10.1038/s41413-024-00346-4","url":null,"abstract":"<p>Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PDZK1 protects against mechanical overload-induced chondrocyte senescence and osteoarthritis by targeting mitochondrial function PDZK1 通过靶向线粒体功能防止机械过载诱导的软骨细胞衰老和骨关节炎
IF 12.7 1区 医学
Bone Research Pub Date : 2024-07-17 DOI: 10.1038/s41413-024-00344-6
Yan Shao, Hongbo Zhang, Hong Guan, Chunyu Wu, Weizhong Qi, Lingfeng Yang, Jianbin Yin, Haiyan Zhang, Liangliang Liu, Yuheng Lu, Yitao Zhao, Sheng Zhang, Chun Zeng, Guiqing Wang, Xiaochun Bai, Daozhang Cai
{"title":"PDZK1 protects against mechanical overload-induced chondrocyte senescence and osteoarthritis by targeting mitochondrial function","authors":"Yan Shao, Hongbo Zhang, Hong Guan, Chunyu Wu, Weizhong Qi, Lingfeng Yang, Jianbin Yin, Haiyan Zhang, Liangliang Liu, Yuheng Lu, Yitao Zhao, Sheng Zhang, Chun Zeng, Guiqing Wang, Xiaochun Bai, Daozhang Cai","doi":"10.1038/s41413-024-00344-6","DOIUrl":"https://doi.org/10.1038/s41413-024-00344-6","url":null,"abstract":"<p>Mechanical overloading and aging are two essential factors for osteoarthritis (OA) development. Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology, but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated. Herein, we found that PDZ domain containing 1 (PDZK1), one of the PDZ proteins, which belongs to the Na<sup>+</sup>/H<sup>+</sup> Exchanger (NHE) regulatory factor family, is a key factor in biomechanically induced mitochondrial dysfunction and chondrocyte senescence during OA progression. PDZK1 is reduced by mechanical overload, and is diminished in the articular cartilage of OA patients, aged mice and OA mice. <i>Pdzk1</i> knockout in chondrocytes exacerbates mechanical overload-induced cartilage degeneration, whereas intraarticular injection of adeno-associated virus-expressing PDZK1 had a therapeutic effect. Moreover, PDZK1 loss impaired chondrocyte mitochondrial function with accumulated damaged mitochondria, decreased mitochondrion DNA (mtDNA) content and increased reactive oxygen species (ROS) production. PDZK1 supplementation or mitoubiquinone (MitoQ) application alleviated chondrocyte senescence and cartilage degeneration and significantly protected chondrocyte mitochondrial functions. MRNA sequencing in articular cartilage from <i>Pdzk1</i> knockout mice and controls showed that PDZK1 deficiency in chondrocytes interfered with mitochondrial function through inhibiting Hmgcs2 by increasing its ubiquitination. Our results suggested that PDZK1 deficiency plays a crucial role in mediating excessive mechanical load-induced chondrocyte senescence and is associated with mitochondrial dysfunction. PDZK1 overexpression or preservation of mitochondrial functions by MitoQ might present a new therapeutic approach for mechanical overload-induced OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caspase-8 promotes scramblase-mediated phosphatidylserine exposure and fusion of osteoclast precursors. Caspase-8可促进由scramblase介导的磷脂酰丝氨酸暴露和破骨细胞前体融合。
IF 14.3 1区 医学
Bone Research Pub Date : 2024-07-11 DOI: 10.1038/s41413-024-00338-4
Brenda Krishnacoumar, Martin Stenzel, Hilal Garibagaoglu, Yasunori Omata, Rachel L Sworn, Thea Hofmann, Natacha Ipseiz, Magdalena A Czubala, Ulrike Steffen, Antonio Maccataio, Cornelia Stoll, Christina Böhm, Martin Herrmann, Stefan Uderhardt, Robert H Jenkins, Philip R Taylor, Anika Grüneboom, Mario M Zaiss, Georg Schett, Gerhard Krönke, Carina Scholtysek
{"title":"Caspase-8 promotes scramblase-mediated phosphatidylserine exposure and fusion of osteoclast precursors.","authors":"Brenda Krishnacoumar, Martin Stenzel, Hilal Garibagaoglu, Yasunori Omata, Rachel L Sworn, Thea Hofmann, Natacha Ipseiz, Magdalena A Czubala, Ulrike Steffen, Antonio Maccataio, Cornelia Stoll, Christina Böhm, Martin Herrmann, Stefan Uderhardt, Robert H Jenkins, Philip R Taylor, Anika Grüneboom, Mario M Zaiss, Georg Schett, Gerhard Krönke, Carina Scholtysek","doi":"10.1038/s41413-024-00338-4","DOIUrl":"10.1038/s41413-024-00338-4","url":null,"abstract":"<p><p>Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease 骨形成、稳态和疾病中的 Wnt/β-catenin 信号成分和机制
IF 12.7 1区 医学
Bone Research Pub Date : 2024-07-10 DOI: 10.1038/s41413-024-00342-8
Lifang Hu, Wei Chen, Airong Qian, Yi-Ping Li
{"title":"Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease","authors":"Lifang Hu, Wei Chen, Airong Qian, Yi-Ping Li","doi":"10.1038/s41413-024-00342-8","DOIUrl":"https://doi.org/10.1038/s41413-024-00342-8","url":null,"abstract":"<p>Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging. PCLAF 可诱导骨髓脂肪细胞衰老并导致骨骼老化。
IF 14.3 1区 医学
Bone Research Pub Date : 2024-07-04 DOI: 10.1038/s41413-024-00337-5
Lingqi Xie, Yalun Cheng, Biao Hu, Xin Chen, Yuze An, Zhuying Xia, Guangping Cai, Changjun Li, Hui Peng
{"title":"PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging.","authors":"Lingqi Xie, Yalun Cheng, Biao Hu, Xin Chen, Yuze An, Zhuying Xia, Guangping Cai, Changjun Li, Hui Peng","doi":"10.1038/s41413-024-00337-5","DOIUrl":"10.1038/s41413-024-00337-5","url":null,"abstract":"<p><p>Bone marrow adipocytes (BMAds) affect bone homeostasis, but the mechanism remains unclear. Here, we showed that exercise inhibited PCNA clamp-associated factor (PCLAF) secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. The genetic deletion of PCLAF in macrophages inhibited BMAds senescence and delayed skeletal aging. In contrast, the transplantation of PCLAF-mediated senescent BMAds into the bone marrow of healthy mice suppressed bone turnover. Mechanistically, PCLAF bound to the ADGRL2 receptor to inhibit AKT/mTOR signaling that triggered BMAds senescence and subsequently spread senescence among osteogenic and osteoclastic cells. Of note, we developed a PCLAF-neutralizing antibody and showed its therapeutic effects on skeletal health in old mice. Together, these findings identify PCLAF as an inducer of BMAds senescence and provide a promising way to treat age-related osteoporosis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Circular RNA circStag1 promotes bone regeneration by interacting with HuR. 撤稿说明:环状 RNA circStag1 通过与 HuR 相互作用促进骨再生。
IF 14.3 1区 医学
Bone Research Pub Date : 2024-06-24 DOI: 10.1038/s41413-024-00348-2
Gaoyang Chen, Canling Long, Shang Wang, Zhenmin Wang, Xin Chen, Wanze Tang, Xiaoqin He, Zhiteng Bao, Baoyu Tan, Jin Zhao, Yongheng Xie, Zhizhong Li, Dazhi Yang, Guozhi Xiao, Songlin Peng
{"title":"Retraction Note: Circular RNA circStag1 promotes bone regeneration by interacting with HuR.","authors":"Gaoyang Chen, Canling Long, Shang Wang, Zhenmin Wang, Xin Chen, Wanze Tang, Xiaoqin He, Zhiteng Bao, Baoyu Tan, Jin Zhao, Yongheng Xie, Zhizhong Li, Dazhi Yang, Guozhi Xiao, Songlin Peng","doi":"10.1038/s41413-024-00348-2","DOIUrl":"10.1038/s41413-024-00348-2","url":null,"abstract":"","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FGF signaling modulates mechanotransduction/WNT signaling in progenitors during tooth root development. 牙根发育过程中,FGF 信号调节祖细胞中的机械传导/WNT 信号。
IF 14.3 1区 医学
Bone Research Pub Date : 2024-06-24 DOI: 10.1038/s41413-024-00345-5
Fei Pei, Tingwei Guo, Mingyi Zhang, Li Ma, Junjun Jing, Jifan Feng, Thach-Vu Ho, Quan Wen, Yang Chai
{"title":"FGF signaling modulates mechanotransduction/WNT signaling in progenitors during tooth root development.","authors":"Fei Pei, Tingwei Guo, Mingyi Zhang, Li Ma, Junjun Jing, Jifan Feng, Thach-Vu Ho, Quan Wen, Yang Chai","doi":"10.1038/s41413-024-00345-5","DOIUrl":"10.1038/s41413-024-00345-5","url":null,"abstract":"<p><p>Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis. Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis. Here, we used tooth root development as a model to explore the roles of FGF signaling and mechanotransduction as well as their interaction in regulating the progenitor cell fate decision. We show that Fgfr1 is expressed in the mesenchymal progenitor cells and their progeny during tooth root development. Loss of Fgfr1 in Gli1<sup>+</sup> progenitors leads to hyperproliferation and differentiation, which causes narrowed periodontal ligament (PDL) space with abnormal cementum/bone formation leading to ankylosis. We further show that aberrant activation of WNT signaling and mechanosensitive channel Piezo2 occurs after loss of FGF signaling in Gli1-Cre<sup>ER</sup>;Fgfr1<sup>fl/fl</sup> mice. Overexpression of Piezo2 leads to increased osteoblastic differentiation and decreased Piezo2 leads to downregulation of WNT signaling. Mechanistically, an FGF/PIEZO2/WNT signaling cascade plays a crucial role in modulating the fate of progenitors during root morphogenesis. Downregulation of WNT signaling rescues tooth ankylosis in Fgfr1 mutant mice. Collectively, our findings uncover the mechanism by which FGF signaling regulates the fate decisions of stem/progenitor cells, and the interactions among signaling pathways and mechanotransduction during tooth root development, providing insights for future tooth root regeneration.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of Siglec-15 in regulating RAP1/RAC signaling in cytoskeletal remodeling in osteoclasts mediated by macrophage colony-stimulating factor Siglec-15 参与调节巨噬细胞集落刺激因子介导的破骨细胞细胞骨架重塑过程中的 RAP1/RAC 信号传导
IF 12.7 1区 医学
Bone Research Pub Date : 2024-06-07 DOI: 10.1038/s41413-024-00340-w
Hideyuki Kobayashi, M. Alaa Terkawi, Masahiro Ota, Tomoka Hasegawa, Tomomaya Yamamoto, Tomohiro Shimizu, Dai Sato, Ryo Fujita, Toshifumi Murakami, Norio Amizuka, Norimasa Iwasaki, Masahiko Takahata
{"title":"Involvement of Siglec-15 in regulating RAP1/RAC signaling in cytoskeletal remodeling in osteoclasts mediated by macrophage colony-stimulating factor","authors":"Hideyuki Kobayashi, M. Alaa Terkawi, Masahiro Ota, Tomoka Hasegawa, Tomomaya Yamamoto, Tomohiro Shimizu, Dai Sato, Ryo Fujita, Toshifumi Murakami, Norio Amizuka, Norimasa Iwasaki, Masahiko Takahata","doi":"10.1038/s41413-024-00340-w","DOIUrl":"https://doi.org/10.1038/s41413-024-00340-w","url":null,"abstract":"<p>DNAX-associated protein 12 kD size (DAP12) is a dominant immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptor that activates costimulatory signals essential for osteoclastogenesis. Although several DAP12-associated receptors (DARs) have been identified in osteoclasts, including triggering receptor expressed on myeloid cells 2 (TREM-2), C-type lectin member 5 A (CLEC5A), and sialic acid-binding Ig-like lectin (Siglec)-15, their precise role in the development of osteoclasts and bone remodeling remain poorly understood. In this study, mice deficient in <i>Trem-2</i>, <i>Clec5a</i>, <i>Siglec-15</i> were generated. In addition, mice double deficient in these DAR genes and FcεRI gamma chain (FcR)γ, an alternative ITAM adaptor to DAP12, were generated. Bone mass analysis was conducted on all mice. Notably, <i>Siglec-15</i> deficient mice and <i>Siglec-15/FcRγ</i> double deficient mice exhibited mild and severe osteopetrosis respectively. In contrast, other DAR deficient mice showed normal bone phenotype. Likewise, osteoclasts from <i>Siglec-</i>15 deficient mice failed to form an actin ring, suggesting that Siglec-15 promotes bone resorption principally by modulating the cytoskeletal organization of osteoclasts. Furthermore, biochemical analysis revealed that Sigelc-15 activates macrophage colony-stimulating factor (M-CSF)-induced Ras-associated protein-1 (RAP1)/Ras-related C3 botulinum toxin substrate 1 (Rac1) pathway through formation of a complex with p130CAS and CrkII, leading to cytoskeletal remodeling of osteoclasts. Our data provide genetic and biochemical evidence that Siglec-15 facilitates M-CSF-induced cytoskeletal remodeling of the osteoclasts.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lumbar instability remodels cartilage endplate to induce intervertebral disc degeneration by recruiting osteoclasts via Hippo-CCL3 signaling 腰椎失稳通过 Hippo-CCL3 信号招募破骨细胞,重塑软骨终板,诱发椎间盘退变
IF 12.7 1区 医学
Bone Research Pub Date : 2024-05-30 DOI: 10.1038/s41413-024-00331-x
Hanwen Li, Yingchuang Tang, Zixiang Liu, Kangwu Chen, Kai Zhang, Sihan Hu, Chun Pan, Huilin Yang, Bin Li, Hao Chen
{"title":"Lumbar instability remodels cartilage endplate to induce intervertebral disc degeneration by recruiting osteoclasts via Hippo-CCL3 signaling","authors":"Hanwen Li, Yingchuang Tang, Zixiang Liu, Kangwu Chen, Kai Zhang, Sihan Hu, Chun Pan, Huilin Yang, Bin Li, Hao Chen","doi":"10.1038/s41413-024-00331-x","DOIUrl":"https://doi.org/10.1038/s41413-024-00331-x","url":null,"abstract":"<p>Degenerated endplate appears with cheese-like morphology and sensory innervation, contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.<sup>1</sup> However, the origin and development mechanism of the cheese-like morphology remain unclear. Here in this study, we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change. Transcriptome sequencing of the endplate chondrocytes under abnormal stress revealed that the Hippo signaling was key for this process. Activation of Hippo signaling or knockout of the key gene Yap1 in the cartilage endplate severed the cheese-like morphological change and disc degeneration after lumbar spine instability (LSI) surgery, while blocking the Hippo signaling reversed this process. Meanwhile, transcriptome sequencing data also showed osteoclast differentiation related gene set expression was up regulated in the endplate chondrocytes under abnormal mechanical stress, which was activated after the Hippo signaling. Among the discovered osteoclast differentiation gene set, CCL3 was found to be largely released from the chondrocytes under abnormal stress, which functioned to recruit and promote osteoclasts formation for cartilage endplate remodeling. Over-expression of Yap1 inhibited CCL3 transcription by blocking its promoter, which then reversed the endplate from remodeling to the cheese-like morphology. Finally, LSI-induced cartilage endplate remodeling was successfully rescued by local injection of an AAV5 wrapped Yap1 over-expression plasmid at the site. These findings suggest that the Hippo signaling induced osteoclast gene set activation in the cartilage endplate is a potential new target for the management of instability induced low back pain and lumbar degeneration.</p><figure></figure>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信