Current cutting-edge omics techniques on musculoskeletal tissues and diseases

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Xiaofei Li, Liang Fang, Renpeng Zhou, Lutian Yao, Sade W. Clayton, Samantha Muscat, Dakota R. Kamm, Cuicui Wang, Chuan-Ju Liu, Ling Qin, Robert J. Tower, Courtney M. Karner, Farshid Guilak, Simon Y. Tang, Alayna E. Loiselle, Gretchen A. Meyer, Jie Shen
{"title":"Current cutting-edge omics techniques on musculoskeletal tissues and diseases","authors":"Xiaofei Li, Liang Fang, Renpeng Zhou, Lutian Yao, Sade W. Clayton, Samantha Muscat, Dakota R. Kamm, Cuicui Wang, Chuan-Ju Liu, Ling Qin, Robert J. Tower, Courtney M. Karner, Farshid Guilak, Simon Y. Tang, Alayna E. Loiselle, Gretchen A. Meyer, Jie Shen","doi":"10.1038/s41413-025-00442-z","DOIUrl":null,"url":null,"abstract":"<p>Musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, osteoporosis, bone fracture, intervertebral disc degeneration, tendinopathy, and myopathy, are prevalent conditions that profoundly impact quality of life and place substantial economic burdens on healthcare systems. Traditional bulk transcriptomics, genomics, proteomics, and metabolomics have played a pivotal role in uncovering disease-associated alterations at the population level. However, these approaches are inherently limited in their ability to resolve cellular heterogeneity or to capture the spatial organization of cells within tissues, thus hindering a comprehensive understanding of the complex cellular and molecular mechanisms underlying these diseases. To address these limitations, advanced single-cell and spatial omics techniques have emerged in recent years, offering unparalleled resolution for investigating cellular diversity, tissue microenvironments, and biomolecular interactions within musculoskeletal tissues. These cutting-edge techniques enable the detailed mapping of the molecular landscapes in diseased tissues, providing transformative insights into pathophysiological processes at both the single-cell and spatial levels. This review presents a comprehensive overview of the latest omics technologies as applied to musculoskeletal research, with a particular focus on their potential to revolutionize our understanding of disease mechanisms. Additionally, we explore the power of multi-omics integration in identifying novel therapeutic targets and highlight key challenges that must be overcome to successfully translate these advancements into clinical applications.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"64 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00442-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, osteoporosis, bone fracture, intervertebral disc degeneration, tendinopathy, and myopathy, are prevalent conditions that profoundly impact quality of life and place substantial economic burdens on healthcare systems. Traditional bulk transcriptomics, genomics, proteomics, and metabolomics have played a pivotal role in uncovering disease-associated alterations at the population level. However, these approaches are inherently limited in their ability to resolve cellular heterogeneity or to capture the spatial organization of cells within tissues, thus hindering a comprehensive understanding of the complex cellular and molecular mechanisms underlying these diseases. To address these limitations, advanced single-cell and spatial omics techniques have emerged in recent years, offering unparalleled resolution for investigating cellular diversity, tissue microenvironments, and biomolecular interactions within musculoskeletal tissues. These cutting-edge techniques enable the detailed mapping of the molecular landscapes in diseased tissues, providing transformative insights into pathophysiological processes at both the single-cell and spatial levels. This review presents a comprehensive overview of the latest omics technologies as applied to musculoskeletal research, with a particular focus on their potential to revolutionize our understanding of disease mechanisms. Additionally, we explore the power of multi-omics integration in identifying novel therapeutic targets and highlight key challenges that must be overcome to successfully translate these advancements into clinical applications.

Abstract Image

当前肌肉骨骼组织和疾病的前沿组学技术
肌肉骨骼疾病,包括骨关节炎、类风湿性关节炎、骨质疏松症、骨折、椎间盘退变、肌腱病和肌病,是深刻影响生活质量并给医疗保健系统带来巨大经济负担的普遍疾病。传统的大量转录组学、基因组学、蛋白质组学和代谢组学在揭示人群水平的疾病相关改变方面发挥了关键作用。然而,这些方法在解决细胞异质性或捕获组织内细胞空间组织的能力方面存在固有的局限性,从而阻碍了对这些疾病背后复杂的细胞和分子机制的全面理解。为了解决这些限制,近年来出现了先进的单细胞和空间组学技术,为研究肌肉骨骼组织内的细胞多样性、组织微环境和生物分子相互作用提供了无与伦比的分辨率。这些尖端技术能够详细绘制病变组织中的分子景观,为单细胞和空间水平的病理生理过程提供变革性的见解。这篇综述全面概述了最新组学技术在肌肉骨骼研究中的应用,特别关注它们对我们对疾病机制的理解产生革命性影响的潜力。此外,我们探索了多组学整合在识别新的治疗靶点方面的力量,并强调了必须克服的关键挑战,才能成功地将这些进步转化为临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信