Inflammatory macrophage-derived itaconate inhibits DNA demethylase TET2 to prevent excessive osteoclast activation in rheumatoid arthritis

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Kewei Rong, Dezheng Wang, Xiting Pu, Cheng Zhang, Pu Zhang, Xiankun Cao, Jinglin Zheng, Xiao Yang, Kexin Liu, Lei Shi, Yin Li, Peixiang Ma, Dan Ye, Jie Zhao, Pu Wang, An Qin
{"title":"Inflammatory macrophage-derived itaconate inhibits DNA demethylase TET2 to prevent excessive osteoclast activation in rheumatoid arthritis","authors":"Kewei Rong, Dezheng Wang, Xiting Pu, Cheng Zhang, Pu Zhang, Xiankun Cao, Jinglin Zheng, Xiao Yang, Kexin Liu, Lei Shi, Yin Li, Peixiang Ma, Dan Ye, Jie Zhao, Pu Wang, An Qin","doi":"10.1038/s41413-025-00437-w","DOIUrl":null,"url":null,"abstract":"<p>Itaconate, a macrophage-specific anti-inflammatory metabolite, has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis. We found that itaconate is a TNF-α responsive metabolite significantly elevated in the serum and synovial fluid of rheumatoid arthritis patients and we demonstrated that itaconate is primarily produced by inflammatory macrophages rather than osteoclasts or osteoblasts. In TNF-transgenic and <i>Irg1</i><sup><i>−/−</i></sup> hybrid mice, a more severe bone destruction phenotype was observed. Administration of itaconate prevents excessive activation of osteoclasts by inhibiting Tet2 enzyme activity. Furthermore, exogenous administration of itaconate or its derivative, 4-octyl-itaconate, inhibits arthritis progression and mitigates bone destruction, offering a potential therapeutic strategy for rheumatoid arthritis. This study elucidates that TNF-α drives macrophage-derived itaconate production to epigenetically suppress osteoclast hyperactivation through Tet2 inhibition, establishing itaconate and its derivative OI as novel therapeutic agents against rheumatoid arthritis -associated bone destruction.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"8 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00437-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Itaconate, a macrophage-specific anti-inflammatory metabolite, has recently emerged as a critical regulator in rheumatoid arthritis pathogenesis. We found that itaconate is a TNF-α responsive metabolite significantly elevated in the serum and synovial fluid of rheumatoid arthritis patients and we demonstrated that itaconate is primarily produced by inflammatory macrophages rather than osteoclasts or osteoblasts. In TNF-transgenic and Irg1−/− hybrid mice, a more severe bone destruction phenotype was observed. Administration of itaconate prevents excessive activation of osteoclasts by inhibiting Tet2 enzyme activity. Furthermore, exogenous administration of itaconate or its derivative, 4-octyl-itaconate, inhibits arthritis progression and mitigates bone destruction, offering a potential therapeutic strategy for rheumatoid arthritis. This study elucidates that TNF-α drives macrophage-derived itaconate production to epigenetically suppress osteoclast hyperactivation through Tet2 inhibition, establishing itaconate and its derivative OI as novel therapeutic agents against rheumatoid arthritis -associated bone destruction.

Abstract Image

炎性巨噬细胞来源的衣康酸抑制DNA去甲基化酶TET2以防止类风湿关节炎中过度的破骨细胞活化
衣康酸是一种巨噬细胞特异性抗炎代谢物,最近被认为是类风湿关节炎发病机制的关键调节因子。我们发现衣康酸是类风湿性关节炎患者血清和滑膜液中TNF-α反应性代谢物,并且我们证明衣康酸主要由炎性巨噬细胞而不是破骨细胞或成骨细胞产生。在tnf转基因和Irg1−/−杂交小鼠中,观察到更严重的骨破坏表型。衣康酸通过抑制Tet2酶活性来防止破骨细胞的过度活化。此外,外源性给药衣康酸或其衍生物,4-辛基衣康酸,可抑制关节炎进展,减轻骨破坏,为类风湿关节炎提供潜在的治疗策略。本研究阐明了TNF-α驱动巨噬细胞衍生的衣康酸产生,通过Tet2抑制表观遗传抑制破骨细胞的过度活化,建立了衣康酸及其衍生物OI作为抗类风湿关节炎相关骨破坏的新型治疗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信