Piezo1通过β-catenin/LARS2信号通路调节软骨细胞线粒体功能促进骨折愈合的机制。

IF 15 1区 医学 Q1 CELL & TISSUE ENGINEERING
Tao Zhang,Hongzhi Lv,Siming Jia,Lijun Wang,Weijian Liu,Kai Ding,Xiaofeng Du,Guangzhao Hou,Zhiyong Hou,Yingze Zhang,Weiguo Zou,Wei Chen,Yanbin Zhu
{"title":"Piezo1通过β-catenin/LARS2信号通路调节软骨细胞线粒体功能促进骨折愈合的机制。","authors":"Tao Zhang,Hongzhi Lv,Siming Jia,Lijun Wang,Weijian Liu,Kai Ding,Xiaofeng Du,Guangzhao Hou,Zhiyong Hou,Yingze Zhang,Weiguo Zou,Wei Chen,Yanbin Zhu","doi":"10.1038/s41413-025-00459-4","DOIUrl":null,"url":null,"abstract":"Piezo1, a key mechanosensor in bone homeostasis, plays a crucial role in fracture healing. However, the mechanisms through which Piezo1 regulates chondrocytes and affects endochondral ossification remain poorly understood. This study aimed to investigate the regulatory mechanisms of Piezo1 in chondrocytes during endochondral ossification. Using lineage tracing, we identified chondrocyte-to-osteoblast transdifferentiation during endochondral ossification, which was impaired by chondrocyte-specific Piezo1 knockout. Piezo1 deficiency disrupted mitochondrial bioenergetics, characterized by diminished membrane potential, reduced adenosine triphosphate (ATP) synthesis, suppressed oxygen consumption rates (basal and maximal respiration), and elevated mitochondrial superoxide generation, thereby impairing endochondral ossification during fracture healing. Single-cell RNA sequencing revealed upregulated Lars2 expression in hypertrophic chondrocytes following Piezo1 knockout. Inhibition of Lars2 in chondrocytes normalized mitochondrial dynamics-related markers (MFN1, MFN2, OPA1, DRP1) and restored mitochondrial functional homeostasis. This intervention concurrently reversed Piezo1 knockout-induced suppression of osteogenic markers (Col1, ALP, OCN, OPN, RUNX2), thereby enhancing fracture repair. Protein interaction analyses confirmed direct binding between β-catenin and Lars2. Mechanistically, Piezo1 governs Lars2 expression via β-catenin signaling. Our findings demonstrate that Piezo1 activation via Yoda1 enhances mitochondrial bioenergetics and accelerates fracture repair through the β-catenin/Lars2 axis, offering novel insights and therapeutic avenues for fracture treatment.","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"94 1","pages":"79"},"PeriodicalIF":15.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Piezo1 regulating chondrocyte mitochondrial function and promoting fracture healing through β-catenin/LARS2 signaling pathway.\",\"authors\":\"Tao Zhang,Hongzhi Lv,Siming Jia,Lijun Wang,Weijian Liu,Kai Ding,Xiaofeng Du,Guangzhao Hou,Zhiyong Hou,Yingze Zhang,Weiguo Zou,Wei Chen,Yanbin Zhu\",\"doi\":\"10.1038/s41413-025-00459-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezo1, a key mechanosensor in bone homeostasis, plays a crucial role in fracture healing. However, the mechanisms through which Piezo1 regulates chondrocytes and affects endochondral ossification remain poorly understood. This study aimed to investigate the regulatory mechanisms of Piezo1 in chondrocytes during endochondral ossification. Using lineage tracing, we identified chondrocyte-to-osteoblast transdifferentiation during endochondral ossification, which was impaired by chondrocyte-specific Piezo1 knockout. Piezo1 deficiency disrupted mitochondrial bioenergetics, characterized by diminished membrane potential, reduced adenosine triphosphate (ATP) synthesis, suppressed oxygen consumption rates (basal and maximal respiration), and elevated mitochondrial superoxide generation, thereby impairing endochondral ossification during fracture healing. Single-cell RNA sequencing revealed upregulated Lars2 expression in hypertrophic chondrocytes following Piezo1 knockout. Inhibition of Lars2 in chondrocytes normalized mitochondrial dynamics-related markers (MFN1, MFN2, OPA1, DRP1) and restored mitochondrial functional homeostasis. This intervention concurrently reversed Piezo1 knockout-induced suppression of osteogenic markers (Col1, ALP, OCN, OPN, RUNX2), thereby enhancing fracture repair. Protein interaction analyses confirmed direct binding between β-catenin and Lars2. Mechanistically, Piezo1 governs Lars2 expression via β-catenin signaling. Our findings demonstrate that Piezo1 activation via Yoda1 enhances mitochondrial bioenergetics and accelerates fracture repair through the β-catenin/Lars2 axis, offering novel insights and therapeutic avenues for fracture treatment.\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"94 1\",\"pages\":\"79\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-025-00459-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00459-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

Piezo1是骨稳态的关键机械传感器,在骨折愈合中起着至关重要的作用。然而,Piezo1调节软骨细胞和影响软骨内成骨的机制仍然知之甚少。本研究旨在探讨Piezo1在软骨内成骨过程中对软骨细胞的调控机制。通过谱系追踪,我们确定了软骨内成骨过程中软骨细胞向成骨细胞的转分化,这一过程被软骨细胞特异性Piezo1敲除所破坏。Piezo1缺乏破坏线粒体生物能量,其特征是膜电位降低,三磷酸腺苷(ATP)合成减少,氧气消耗率(基础呼吸和最大呼吸)抑制,线粒体超氧化物生成增加,从而损害骨折愈合过程中的软骨内成骨。单细胞RNA测序显示,Piezo1基因敲除后,增生性软骨细胞中Lars2表达上调。抑制软骨细胞中的Lars2可使线粒体动力学相关标志物(MFN1、MFN2、OPA1、DRP1)正常化,并恢复线粒体功能稳态。这种干预同时逆转了Piezo1敲除诱导的成骨标志物(Col1、ALP、OCN、OPN、RUNX2)的抑制,从而增强了骨折的修复。蛋白相互作用分析证实β-catenin与Lars2直接结合。在机制上,Piezo1通过β-catenin信号传导控制Lars2的表达。我们的研究结果表明,通过Yoda1激活Piezo1可以增强线粒体生物能量,并通过β-catenin/Lars2轴加速骨折修复,为骨折治疗提供了新的见解和治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism of Piezo1 regulating chondrocyte mitochondrial function and promoting fracture healing through β-catenin/LARS2 signaling pathway.
Piezo1, a key mechanosensor in bone homeostasis, plays a crucial role in fracture healing. However, the mechanisms through which Piezo1 regulates chondrocytes and affects endochondral ossification remain poorly understood. This study aimed to investigate the regulatory mechanisms of Piezo1 in chondrocytes during endochondral ossification. Using lineage tracing, we identified chondrocyte-to-osteoblast transdifferentiation during endochondral ossification, which was impaired by chondrocyte-specific Piezo1 knockout. Piezo1 deficiency disrupted mitochondrial bioenergetics, characterized by diminished membrane potential, reduced adenosine triphosphate (ATP) synthesis, suppressed oxygen consumption rates (basal and maximal respiration), and elevated mitochondrial superoxide generation, thereby impairing endochondral ossification during fracture healing. Single-cell RNA sequencing revealed upregulated Lars2 expression in hypertrophic chondrocytes following Piezo1 knockout. Inhibition of Lars2 in chondrocytes normalized mitochondrial dynamics-related markers (MFN1, MFN2, OPA1, DRP1) and restored mitochondrial functional homeostasis. This intervention concurrently reversed Piezo1 knockout-induced suppression of osteogenic markers (Col1, ALP, OCN, OPN, RUNX2), thereby enhancing fracture repair. Protein interaction analyses confirmed direct binding between β-catenin and Lars2. Mechanistically, Piezo1 governs Lars2 expression via β-catenin signaling. Our findings demonstrate that Piezo1 activation via Yoda1 enhances mitochondrial bioenergetics and accelerates fracture repair through the β-catenin/Lars2 axis, offering novel insights and therapeutic avenues for fracture treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信