高尔基恢复囊泡补充可延缓骨质老化并促进老化骨再生

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Peisheng Liu, Hao Guo, Xiaoyao Huang, Anqi Liu, Ting Zhu, Chenxi Zheng, Fei Fu, Kaichao Zhang, Shijie Li, Xinyan Luo, Jiongyi Tian, Yan Jin, Kun Xuan, Bingdong Sui
{"title":"高尔基恢复囊泡补充可延缓骨质老化并促进老化骨再生","authors":"Peisheng Liu, Hao Guo, Xiaoyao Huang, Anqi Liu, Ting Zhu, Chenxi Zheng, Fei Fu, Kaichao Zhang, Shijie Li, Xinyan Luo, Jiongyi Tian, Yan Jin, Kun Xuan, Bingdong Sui","doi":"10.1038/s41413-024-00386-w","DOIUrl":null,"url":null,"abstract":"<p>Healthy aging is a common goal for humanity and society, and one key to achieving it is the rejuvenation of senescent resident stem cells and empowerment of aging organ regeneration. However, the mechanistic understandings of stem cell senescence and the potential strategies to counteract it remain elusive. Here, we reveal that the aging bone microenvironment impairs the Golgi apparatus thus diminishing mesenchymal stem cell (MSC) function and regeneration. Interestingly, replenishment of cell aggregates-derived extracellular vesicles (CA-EVs) rescues Golgi dysfunction and empowers senescent MSCs through the Golgi regulatory protein Syntaxin 5. Importantly, in vivo administration of CA-EVs significantly enhanced the bone defect repair rate and improved bone mass in aging mice, suggesting their therapeutic value for treating age-related osteoporosis and promoting bone regeneration. Collectively, our findings provide insights into Golgi regulation in stem cell senescence and bone aging, which further highlight CA-EVs as a potential rejuvenative approach for aging bone regeneration.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"48 20 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Golgi-restored vesicular replenishment retards bone aging and empowers aging bone regeneration\",\"authors\":\"Peisheng Liu, Hao Guo, Xiaoyao Huang, Anqi Liu, Ting Zhu, Chenxi Zheng, Fei Fu, Kaichao Zhang, Shijie Li, Xinyan Luo, Jiongyi Tian, Yan Jin, Kun Xuan, Bingdong Sui\",\"doi\":\"10.1038/s41413-024-00386-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Healthy aging is a common goal for humanity and society, and one key to achieving it is the rejuvenation of senescent resident stem cells and empowerment of aging organ regeneration. However, the mechanistic understandings of stem cell senescence and the potential strategies to counteract it remain elusive. Here, we reveal that the aging bone microenvironment impairs the Golgi apparatus thus diminishing mesenchymal stem cell (MSC) function and regeneration. Interestingly, replenishment of cell aggregates-derived extracellular vesicles (CA-EVs) rescues Golgi dysfunction and empowers senescent MSCs through the Golgi regulatory protein Syntaxin 5. Importantly, in vivo administration of CA-EVs significantly enhanced the bone defect repair rate and improved bone mass in aging mice, suggesting their therapeutic value for treating age-related osteoporosis and promoting bone regeneration. Collectively, our findings provide insights into Golgi regulation in stem cell senescence and bone aging, which further highlight CA-EVs as a potential rejuvenative approach for aging bone regeneration.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"48 20 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00386-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00386-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Golgi-restored vesicular replenishment retards bone aging and empowers aging bone regeneration

Golgi-restored vesicular replenishment retards bone aging and empowers aging bone regeneration

Healthy aging is a common goal for humanity and society, and one key to achieving it is the rejuvenation of senescent resident stem cells and empowerment of aging organ regeneration. However, the mechanistic understandings of stem cell senescence and the potential strategies to counteract it remain elusive. Here, we reveal that the aging bone microenvironment impairs the Golgi apparatus thus diminishing mesenchymal stem cell (MSC) function and regeneration. Interestingly, replenishment of cell aggregates-derived extracellular vesicles (CA-EVs) rescues Golgi dysfunction and empowers senescent MSCs through the Golgi regulatory protein Syntaxin 5. Importantly, in vivo administration of CA-EVs significantly enhanced the bone defect repair rate and improved bone mass in aging mice, suggesting their therapeutic value for treating age-related osteoporosis and promoting bone regeneration. Collectively, our findings provide insights into Golgi regulation in stem cell senescence and bone aging, which further highlight CA-EVs as a potential rejuvenative approach for aging bone regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信