Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Qi Dong, Haoyuan Fu, Wenxiao Li, Xinyu Ji, Yingchao Yin, Yiran Zhang, Yanbo Zhu, Guoqiang Li, Huiyang Jia, Heng Zhang, Haofei Wang, Jinglue Hu, Ganggang Wang, Zhihao Wu, Yingze Zhang, Sujuan Xu, Zhiyong Hou
{"title":"Nuclear farnesoid X receptor protects against bone loss by driving osteoblast differentiation through stabilizing RUNX2","authors":"Qi Dong, Haoyuan Fu, Wenxiao Li, Xinyu Ji, Yingchao Yin, Yiran Zhang, Yanbo Zhu, Guoqiang Li, Huiyang Jia, Heng Zhang, Haofei Wang, Jinglue Hu, Ganggang Wang, Zhihao Wu, Yingze Zhang, Sujuan Xu, Zhiyong Hou","doi":"10.1038/s41413-024-00394-w","DOIUrl":null,"url":null,"abstract":"<p>The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis. Nuclear receptors (NRs) are now understood to be crucial in bone physiology and pathology. However, the function of the Farnesoid X receptor (FXR), a member of the NR family, in regulating bone homeostasis remains incompletely understood. In this study, in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells (BMSCs) and osteoblasts due to impaired osteoblast differentiation. Mechanistically, FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination, thereby promoting osteogenic activity in BMSCs. Moreover, activated FXR could directly bind to the Thoc6 promoter, suppressing its expression. The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6. Additionally, Obeticholic acid (OCA), an orally available FXR agonist, could ameliorate bone loss in an ovariectomy (OVX)-induced osteoporotic mouse model. Taken together, our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"4 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00394-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis. Nuclear receptors (NRs) are now understood to be crucial in bone physiology and pathology. However, the function of the Farnesoid X receptor (FXR), a member of the NR family, in regulating bone homeostasis remains incompletely understood. In this study, in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells (BMSCs) and osteoblasts due to impaired osteoblast differentiation. Mechanistically, FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination, thereby promoting osteogenic activity in BMSCs. Moreover, activated FXR could directly bind to the Thoc6 promoter, suppressing its expression. The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6. Additionally, Obeticholic acid (OCA), an orally available FXR agonist, could ameliorate bone loss in an ovariectomy (OVX)-induced osteoporotic mouse model. Taken together, our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.

Abstract Image

核法氏体X受体通过稳定RUNX2来驱动成骨细胞分化,从而防止骨质流失
成骨细胞形成骨和破骨细胞吸收骨之间的微妙平衡维持骨稳态。核受体(NRs)在骨生理和病理中起着至关重要的作用。然而,Farnesoid X受体(FXR)作为NR家族的一员,在调节骨稳态中的作用仍不完全清楚。在这项研究中,体外和体内模型显示,由于成骨细胞分化受损,骨髓间充质干细胞(BMSCs)和成骨细胞中缺乏FXR的小鼠骨发育延迟和骨质疏松表型。机制上,FXR可以通过抑制thoc6介导的泛素化来稳定RUNX2,从而促进BMSCs的成骨活性。此外,激活的FXR可以直接结合Thoc6启动子,抑制其表达。RUNX2与Thoc6的相互作用是由RUNX2的Runt结构域和Thoc6的WD重复序列介导的。此外,口服FXR激动剂奥贝胆酸(OCA)可以改善卵巢切除术(OVX)诱导的骨质疏松小鼠模型中的骨质流失。综上所述,我们的研究结果表明FXR通过调节RUNX2的稳定性在成骨细胞分化中起关键作用,靶向FXR可能是一种很有前景的骨质疏松症治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
文献相关原料
公司名称
产品信息
索莱宝
TRAP staining solution
索莱宝
HE staining solution
索莱宝
EDTA
索莱宝
Alizarin Red S
索莱宝
Alcian blue 8GX
索莱宝
cetylpyridinium chloride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信