Biological Research最新文献

筛选
英文 中文
Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target. 增强肥胖症中脂肪组织的功能:以衰老治疗、自噬和细胞衰老为目标。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-08-08 DOI: 10.1186/s40659-024-00531-z
Consuelo Arias, Javiera Álvarez-Indo, Mariana Cifuentes, Eugenia Morselli, Bredford Kerr, Patricia V Burgos
{"title":"Enhancing adipose tissue functionality in obesity: senotherapeutics, autophagy and cellular senescence as a target.","authors":"Consuelo Arias, Javiera Álvarez-Indo, Mariana Cifuentes, Eugenia Morselli, Bredford Kerr, Patricia V Burgos","doi":"10.1186/s40659-024-00531-z","DOIUrl":"10.1186/s40659-024-00531-z","url":null,"abstract":"<p><p>Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of a supplemented diet containing 7 probiotic strains (Honeybeeotic) on honeybee physiology and immune response: analysis of hemolymph cytology, phenoloxidase activity, and gut microbiome. 含有 7 种益生菌株的补充食物(Honeybeeotic)对蜜蜂生理和免疫反应的影响:血淋巴细胞学、酚氧化酶活性和肠道微生物组分析。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-08-07 DOI: 10.1186/s40659-024-00533-x
Patrizia Robino, Livio Galosi, Alessandro Bellato, Silvia Vincenzetti, Elena Gonella, Ilario Ferrocino, Evelina Serri, Lucia Biagini, Alessandra Roncarati, Patrizia Nebbia, Chiara Menzio, Giacomo Rossi
{"title":"Effects of a supplemented diet containing 7 probiotic strains (Honeybeeotic) on honeybee physiology and immune response: analysis of hemolymph cytology, phenoloxidase activity, and gut microbiome.","authors":"Patrizia Robino, Livio Galosi, Alessandro Bellato, Silvia Vincenzetti, Elena Gonella, Ilario Ferrocino, Evelina Serri, Lucia Biagini, Alessandra Roncarati, Patrizia Nebbia, Chiara Menzio, Giacomo Rossi","doi":"10.1186/s40659-024-00533-x","DOIUrl":"10.1186/s40659-024-00533-x","url":null,"abstract":"<p><strong>Background: </strong>In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology.</p><p><strong>Results: </strong>The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host.</p><p><strong>Conclusions: </strong>This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304726/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the role of the subcommissural organ in early brain development through transcriptomic analysis 通过转录组分析揭示亚组织器官在早期大脑发育中的作用
IF 6.7 2区 生物学
Biological Research Pub Date : 2024-07-27 DOI: 10.1186/s40659-024-00524-y
Maryori González, Felipe Maurelia, Jaime Aguayo, Roberto Amigo, Rodrigo Arrué, José Leonardo Gutiérrez, Marcela Torrejón, Carlos Farkas, Teresa Caprile
{"title":"Uncovering the role of the subcommissural organ in early brain development through transcriptomic analysis","authors":"Maryori González, Felipe Maurelia, Jaime Aguayo, Roberto Amigo, Rodrigo Arrué, José Leonardo Gutiérrez, Marcela Torrejón, Carlos Farkas, Teresa Caprile","doi":"10.1186/s40659-024-00524-y","DOIUrl":"https://doi.org/10.1186/s40659-024-00524-y","url":null,"abstract":"The significant role of embryonic cerebrospinal fluid (eCSF) in the initial stages of brain development has been thoroughly studied. This fluid contains crucial molecules for proper brain development such as members of the Wnt and FGF families, apolipoproteins, and retinol binding protein. Nevertheless, the source of these molecules remains uncertain since they are present before the formation of the choroid plexus, which is conventionally known as the primary producer of cerebrospinal fluid. The subcommissural organ (SCO) is a highly conserved gland located in the diencephalon and is one of the earliest differentiating brain structures. The SCO secretes molecules into the eCSF, prior to the differentiation of the choroid plexus, playing a pivotal role in the homeostasis and dynamics of this fluid. One of the key molecules secreted by the SCO is SCO-spondin, a protein involved in maintenance of the normal ventricle size, straight spinal axis, neurogenesis, and axonal guidance. Furthermore, SCO secretes transthyretin and basic fibroblast growth factor 2, while other identified molecules in the eCSF could potentially be secreted by the SCO. Additionally, various transcription factors have been identified in the SCO. However, the precise mechanisms involved in the early SCO development are not fully understood. To uncover key molecular players and signaling pathways involved in the role of the SCO during brain development, we conducted a transcriptomic analysis comparing the embryonic chick SCO at HH23 and HH30 stages (4 and 7 days respectively). Additionally, a public transcriptomic data from HH30 entire chick brain was used to compare expression levels between SCO and whole brain transcriptome. These analyses revealed that, at both stages, the SCO differentially expresses several members of bone morphogenic proteins, Wnt and fibroblast growth factors families, diverse proteins involved in axonal guidance, neurogenic and differentiative molecules, cell receptors and transcription factors. The secretory pathway is particularly upregulated at stage HH30 while the proliferative pathway is increased at stage HH23. The results suggest that the SCO has the capacity to secrete several morphogenic molecules to the eCSF prior to the development of other structures, such as the choroid plexus.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A preclinical mice model of multiple sclerosis based on the toxin-induced double-site demyelination of callosal and cerebellar fibers. 基于毒素诱导的胼胝体和小脑纤维双部位脱髓鞘的多发性硬化症临床前小鼠模型。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-07-22 DOI: 10.1186/s40659-024-00529-7
Sebastián Vejar, Ignacio S Pizarro, Raúl Pulgar-Sepúlveda, Sinay C Vicencio, Andrés Polit, Cristian A Amador, Rodrigo Del Rio, Rodrigo Varas, Juan A Orellana, Fernando C Ortiz
{"title":"A preclinical mice model of multiple sclerosis based on the toxin-induced double-site demyelination of callosal and cerebellar fibers.","authors":"Sebastián Vejar, Ignacio S Pizarro, Raúl Pulgar-Sepúlveda, Sinay C Vicencio, Andrés Polit, Cristian A Amador, Rodrigo Del Rio, Rodrigo Varas, Juan A Orellana, Fernando C Ortiz","doi":"10.1186/s40659-024-00529-7","DOIUrl":"10.1186/s40659-024-00529-7","url":null,"abstract":"<p><strong>Background: </strong>Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs.</p><p><strong>Results: </strong>Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs.</p><p><strong>Conclusion: </strong>We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renoprotective effect of a novel combination of 6-gingerol and metformin in high-fat diet/streptozotocin-induced diabetic nephropathy in rats via targeting miRNA-146a, miRNA-223, TLR4/TRAF6/NLRP3 inflammasome pathway and HIF-1α. 通过靶向 miRNA-146a、miRNA-223、TLR4/TRAF6/NLRP3 炎性体通路和 HIF-1α ,6-姜酚和二甲双胍的新型组合对高脂饮食/链脲佐菌素诱导的大鼠糖尿病肾病具有肾保护作用
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-07-20 DOI: 10.1186/s40659-024-00527-9
Merna G Aboismaiel, Mohamed N Amin, Laila A Eissa
{"title":"Renoprotective effect of a novel combination of 6-gingerol and metformin in high-fat diet/streptozotocin-induced diabetic nephropathy in rats via targeting miRNA-146a, miRNA-223, TLR4/TRAF6/NLRP3 inflammasome pathway and HIF-1α.","authors":"Merna G Aboismaiel, Mohamed N Amin, Laila A Eissa","doi":"10.1186/s40659-024-00527-9","DOIUrl":"10.1186/s40659-024-00527-9","url":null,"abstract":"<p><strong>Background: </strong>MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated.</p><p><strong>Methods: </strong>Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1β) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed.</p><p><strong>Results: </strong>6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1β, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone.</p><p><strong>Conclusion: </strong>6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling a novel memory center in human brain: neurochemical identification of the nucleus incertus, a key pontine locus implicated in stress and neuropathology. 揭示人脑中的新型记忆中心:神经化学鉴定与压力和神经病理学有关的关键脑桥部位--incertus 核。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-07-16 DOI: 10.1186/s40659-024-00523-z
Camila de Ávila, Anna Gugula, Aleksandra Trenk, Anthony J Intorcia, Crystal Suazo, Jennifer Nolz, Julie Plamondon, Divyanshi Khatri, Lauren Tallant, Alexandre Caron, Anna Blasiak, Geidy E Serrano, Thomas G Beach, Andrew L Gundlach, Diego F Mastroeni
{"title":"Unveiling a novel memory center in human brain: neurochemical identification of the nucleus incertus, a key pontine locus implicated in stress and neuropathology.","authors":"Camila de Ávila, Anna Gugula, Aleksandra Trenk, Anthony J Intorcia, Crystal Suazo, Jennifer Nolz, Julie Plamondon, Divyanshi Khatri, Lauren Tallant, Alexandre Caron, Anna Blasiak, Geidy E Serrano, Thomas G Beach, Andrew L Gundlach, Diego F Mastroeni","doi":"10.1186/s40659-024-00523-z","DOIUrl":"10.1186/s40659-024-00523-z","url":null,"abstract":"<p><strong>Background: </strong>The nucleus incertus (NI) was originally described by Streeter in 1903, as a midline region in the floor of the fourth ventricle of the human brain with an 'unknown' function. More than a century later, the neuroanatomy of the NI has been described in lower vertebrates, but not in humans. Therefore, we examined the neurochemical anatomy of the human NI using markers, including the neuropeptide, relaxin-3 (RLN3), and began to explore the distribution of the NI-related RLN3 innervation of the hippocampus.</p><p><strong>Methods: </strong>Histochemical staining of serial, coronal sections of control human postmortem pons was conducted to reveal the presence of the NI by detection of immunoreactivity (IR) for the neuronal markers, microtubule-associated protein-2 (MAP2), glutamic acid dehydrogenase (GAD)-65/67 and corticotrophin-releasing hormone receptor 1 (CRHR1), and RLN3, which is highly expressed in NI neurons in diverse species. RLN3 and vesicular GABA transporter 1 (vGAT1) mRNA were detected by fluorescent in situ hybridization. Pons sections containing the NI from an AD case were immunostained for phosphorylated-tau, to explore potential relevance to neurodegenerative diseases. Lastly, sections of the human hippocampus were stained to detect RLN3-IR and somatostatin (SST)-IR.</p><p><strong>Results: </strong>In the dorsal, anterior-medial region of the human pons, neurons containing RLN3- and MAP2-IR, and RLN3/vGAT1 mRNA-positive neurons were observed in an anatomical pattern consistent with that of the NI in other species. GAD65/67- and CRHR1-immunopositive neurons were also detected within this area. Furthermore, RLN3- and AT8-IR were co-localized within NI neurons of an AD subject. Lastly, RLN3-IR was detected in neurons within the CA1, CA2, CA3 and DG areas of the hippocampus, in the absence of RLN3 mRNA. In the DG, RLN3- and SST-IR were co-localized in a small population of neurons.</p><p><strong>Conclusions: </strong>Aspects of the anatomy of the human NI are shared across species, including a population of stress-responsive, RLN3-expressing neurons and a RLN3 innervation of the hippocampus. Accumulation of phosphorylated-tau in the NI suggests its possible involvement in AD pathology. Further characterization of the neurochemistry of the human NI will increase our understanding of its functional role in health and disease.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chrysin-loaded PEGylated liposomes protect against alloxan-induced diabetic neuropathy in rats: the interplay between endoplasmic reticulum stress and autophagy. 含蛹虫草素的聚乙二醇脂质体对阿脲诱导的大鼠糖尿病神经病变有保护作用:内质网应激和自噬之间的相互作用
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-07-09 DOI: 10.1186/s40659-024-00521-1
Mahran Mohamed Abd El-Emam, Amany Behairy, Mahmoud Mostafa, Tarek Khamis, Noura M S Osman, Amira Ebrahim Alsemeh, Mohamed Fouad Mansour
{"title":"Chrysin-loaded PEGylated liposomes protect against alloxan-induced diabetic neuropathy in rats: the interplay between endoplasmic reticulum stress and autophagy.","authors":"Mahran Mohamed Abd El-Emam, Amany Behairy, Mahmoud Mostafa, Tarek Khamis, Noura M S Osman, Amira Ebrahim Alsemeh, Mohamed Fouad Mansour","doi":"10.1186/s40659-024-00521-1","DOIUrl":"10.1186/s40659-024-00521-1","url":null,"abstract":"<p><strong>Background: </strong>Diabetic neuropathy (DN) is recognized as a significant complication arising from diabetes mellitus (DM). Pathogenesis of DN is accelerated by endoplasmic reticulum (ER) stress, which inhibits autophagy and contributes to disease progression. Autophagy is a highly conserved mechanism crucial in mitigating cell death induced by ER stress. Chrysin, a naturally occurring flavonoid, can be found abundantly in honey, propolis, and various plant extracts. Despite possessing advantageous attributes such as being an antioxidant, anti-allergic, anti-inflammatory, anti-fibrotic, and anticancer agent, chrysin exhibits limited bioavailability. The current study aimed to produce a more bioavailable form of chrysin and discover how administering chrysin could alter the neuropathy induced by Alloxan in male rats.</p><p><strong>Methods: </strong>Chrysin was formulated using PEGylated liposomes to boost its bioavailability and formulation. Chrysin PEGylated liposomes (Chr-PLs) were characterized for particle size diameter, zeta potential, polydispersity index, transmission electron microscopy, and in vitro drug release. Rats were divided into four groups: control, Alloxan, metformin, and Chr-PLs. In order to determine Chr- PLs' antidiabetic activity and, by extension, its capacity to ameliorate DN, several experiments were carried out. These included measuring acetylcholinesterase, fasting blood glucose, insulin, genes dependent on autophagy or stress in the endoplasmic reticulum, and histopathological analysis.</p><p><strong>Results: </strong>According to the results, the prepared Chr-PLs exhibited an average particle size of approximately 134 nm. They displayed even distribution of particle sizes. The maximum entrapment efficiency of 90.48 ± 7.75% was achieved. Chr-PLs effectively decreased blood glucose levels by 67.7% and elevated serum acetylcholinesterase levels by 40% compared to diabetic rats. Additionally, Chr-PLs suppressed the expression of ER stress-related genes (ATF-6, CHOP, XBP-1, BiP, JNK, PI3K, Akt, and mTOR by 33%, 39.5%, 32.2%, 44.4%, 40.4%, 39.2%, 39%, and 35.9%, respectively). They also upregulated the miR-301a-5p expression levels by 513% and downregulated miR-301a-5p expression levels by 65%. They also boosted the expression of autophagic markers (AMPK, ULK1, Beclin 1, and LC3-II by 90.3%, 181%, 109%, and 78%, respectively) in the sciatic nerve. The histopathological analysis also showed that Chr-PLs inhibited sciatic nerve degeneration.</p><p><strong>Conclusion: </strong>The findings suggest that Chr-PLs may be helpful in the protection against DN via regulation of ER stress and autophagy.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lead and calcium crosstalk tempted acrosome damage and hyperpolarization of spermatozoa: signaling and ultra-structural evidences. 铅和钙的串扰诱导了顶体损伤和精子的超极化:信号和超结构证据。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-07-05 DOI: 10.1186/s40659-024-00517-x
Rajkumar Singh Yadav, Bhawna Kushawaha, Rahul Dhariya, Dilip Kumar Swain, Brijesh Yadav, Mukul Anand, Priyambada Kumari, Pradeep Kumar Rai, Dipty Singh, Sarvajeet Yadav, Satish Kumar Garg
{"title":"Lead and calcium crosstalk tempted acrosome damage and hyperpolarization of spermatozoa: signaling and ultra-structural evidences.","authors":"Rajkumar Singh Yadav, Bhawna Kushawaha, Rahul Dhariya, Dilip Kumar Swain, Brijesh Yadav, Mukul Anand, Priyambada Kumari, Pradeep Kumar Rai, Dipty Singh, Sarvajeet Yadav, Satish Kumar Garg","doi":"10.1186/s40659-024-00517-x","DOIUrl":"10.1186/s40659-024-00517-x","url":null,"abstract":"<p><strong>Background: </strong>Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 μg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb<sup>2+</sup>) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h.</p><p><strong>Results: </strong>Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb<sup>2+</sup> modulated intracellular cAMP and Ca<sup>2+</sup> levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb<sup>2+</sup> -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria.</p><p><strong>Conclusions: </strong>Pb<sup>2+</sup> not only mimics Ca<sup>2+</sup> but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca<sup>2+</sup> channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca<sup>2+</sup> release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Tridax procumbens flavonoids promote osteoblast differentiation and bone formation. 撤稿说明:蒲公英黄酮类化合物可促进成骨细胞分化和骨形成。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-06-24 DOI: 10.1186/s40659-024-00525-x
Md Abdullah Al Mamun, Mohammad Jakir Hosen, Kamrul Islam, Amina Khatun, M Masihul Alam, Md Abdul Alim Al-Bari
{"title":"Retraction Note: Tridax procumbens flavonoids promote osteoblast differentiation and bone formation.","authors":"Md Abdullah Al Mamun, Mohammad Jakir Hosen, Kamrul Islam, Amina Khatun, M Masihul Alam, Md Abdul Alim Al-Bari","doi":"10.1186/s40659-024-00525-x","DOIUrl":"10.1186/s40659-024-00525-x","url":null,"abstract":"","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular hydrogen promotes retinal vascular regeneration and attenuates neovascularization and neuroglial dysfunction in oxygen-induced retinopathy mice. 分子氢促进氧诱导视网膜病变小鼠的视网膜血管再生,并减轻新生血管和神经胶质细胞功能障碍。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-06-24 DOI: 10.1186/s40659-024-00515-z
Yatu Guo, Jiahui Qin, Ruiqiang Sun, Peng Hao, Zhixin Jiang, Yuchuan Wang, Zhiqi Gao, Huan Zhang, Keliang Xie, Wei Zhang
{"title":"Molecular hydrogen promotes retinal vascular regeneration and attenuates neovascularization and neuroglial dysfunction in oxygen-induced retinopathy mice.","authors":"Yatu Guo, Jiahui Qin, Ruiqiang Sun, Peng Hao, Zhixin Jiang, Yuchuan Wang, Zhiqi Gao, Huan Zhang, Keliang Xie, Wei Zhang","doi":"10.1186/s40659-024-00515-z","DOIUrl":"10.1186/s40659-024-00515-z","url":null,"abstract":"<p><strong>Background: </strong>Retinopathy of Prematurity (ROP) is a proliferative retinal vascular disease occurring in the retina of premature infants and is the main cause of childhood blindness. Nowadays anti-VEGF and retinal photocoagulation are mainstream treatments for ROP, but they develop a variety of complications. Hydrogen (H<sub>2</sub>) is widely considered as a useful neuroprotective and antioxidative therapeutic method for hypoxic-ischemic disease without toxic effects. However, whether H<sub>2</sub> provides physiological angiogenesis promotion, neovascularization suppression and glial protection in the progression of ROP is largely unknown.This study aims to investigate the effects of H<sub>2</sub> on retinal angiogenesis, neovascularization and neuroglial dysfunction in the retinas of oxygen-induced retinopathy (OIR) mice.</p><p><strong>Methods: </strong>In this study, mice that were seven days old and either wild-type (WT) or Nrf2-deficient (Nrf2-/-) were exposed to 75% oxygen for 5 days and then returned to normal air conditions. Different stages of hydrogen gas (H<sub>2</sub>) inhalation were administered. Vascular obliteration, neovascularization, and blood vessel leakage were analyzed and compared. To count the number of neovascularization endothelial nuclei, routine HE staining of retinal sections was conducted. Immunohistochemistry was performed using DyLight 594 labeled GSL I-isolectin B4 (IB4), as well as primary antibodies against proliferating cell nuclear antigen (PCNA), glial fibrillary acidic protein (GFAP), and Iba-1. Western blots were used to measure the expression of NF-E2-related factor 2 (Nrf2), vascular endothelial growth factor (VEGF), Notch1, Dll4, and HIF-1α. Additionally, the expression of target genes such as NQO1, HO-1, Notch1, Hey1, Hey2, and Dll4 was measured. Human umbilical vein endothelial cells (HUVECs) treated with H<sub>2</sub> under hypoxia were used as an in vitro model. RT-PCR was used to evaluate the mRNA expression of Nrf2, Notch/Dll4, and the target genes. The expression of reactive oxygen species (ROS) was observed using immunofluorescence staining.</p><p><strong>Results: </strong>Our results indicate that 3-4% H<sub>2</sub> does not disturb retinal physiological angiogenesis, but ameliorates vaso-obliteration and neovascularization in OIR mice. Moreover, H<sub>2</sub> prevents the decreased density and reverses the morphologic and functional changes in retinal astrocytes caused by oxygen-induced injury. In addition, H<sub>2</sub> inhalation reduces microglial activation, especially in the area of neovascularization in OIR mice. H<sub>2</sub> plays a protective role in vascular regeneration by promoting Nrf2 activation and suppressing the Dll4-induced Notch signaling pathway in vivo. Also, H<sub>2</sub> promotes the proliferation of HUVECs under hypoxia by negatively regulating the Dll4/Notch pathway and reducing ROS levels through Nrf2 pathway aligning with our findings in vivo.Moreove","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信