Small extracellular vesicles enhance the survival of Sca-1+ cardiac stem cells against ROS-induced ischemic-reoxygenation injury in vitro.

IF 4.3 2区 生物学 Q1 BIOLOGY
Radwa A Mehanna, Hagar Elkafrawy, Marwa M Essawy, Samar S Ibrahim, Ashraf K Awaad, Nehal A Khalil, Marwa A Kholief, Abeer Sallam, Heba A Hamed, Mona A Barkat, Mohamed F ElKady, Eman H Thabet
{"title":"Small extracellular vesicles enhance the survival of Sca-1+ cardiac stem cells against ROS-induced ischemic-reoxygenation injury in vitro.","authors":"Radwa A Mehanna, Hagar Elkafrawy, Marwa M Essawy, Samar S Ibrahim, Ashraf K Awaad, Nehal A Khalil, Marwa A Kholief, Abeer Sallam, Heba A Hamed, Mona A Barkat, Mohamed F ElKady, Eman H Thabet","doi":"10.1186/s40659-025-00593-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic reperfusion (IR) generates reactive oxygen species (ROS) that inevitably result in myocardial cell death and heart failure. The regenerative power of cardiac progenitor/stem pools (CSCs), especially the Sca1<sup>+</sup> population, in response to IR injury remains unclear.</p><p><strong>Methods: </strong>Our work sought to investigate whether small extracellular vesicles (sEVs) isolated from bone marrow-mesenchymal stem cells (BMMSCs) could rescue CSCs, specifically Sca-1+/CSCs, from IR by increasing their proliferative capacity and limiting their apoptosis in vitro. The Sca-1+/CSCs-IR model was induced by the oxygen-glucose deprivation/reoxygenation method (OGD/R). The effects of treatment with BMMSCs-derived sEVs on oxidative stress, cell proliferation, apoptosis, and cell cycle were assessed. To further test the mechanistic action, we assessed the PTEN/pAkt/HIF-1α pathway.</p><p><strong>Results: </strong>Compared to hypoxic untreated CSCs, BMMSCs-derived sEVs-treated cells had shifted from their quiescent to proliferative phase (p > 0.05) and showed decreased apoptosis (p < 0.001). sEVs-treated CSCs were predominately in the S phase (11.8 ± 0.9%) (p < 0.01). We identified an abundance of miRNA-21-5P in BMMSCs. HIF-1α expression was highest in CSCs treated with sEVs (p < 0.05). Moreover, miRNA-21-5p-rich sEVs shifted the redox state, reducing oxidative stress and promoting balance (p > 0.05).</p><p><strong>Conclusion: </strong>Conditioning Sca-1+/CSCs, an essential population in the postnatal heart, with sEVs rich in miRNA-21 robustly enhanced the proliferation, and synthesis phase of the cell cycle, and stabilized HIF-1α while alleviating oxidative stress and apoptosis. Such sEVs rich in miRNA-21-5p can be further used as a preconditioning tool to enhance endogenous Sca-1+/CSCs regeneration in response to IR injury.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"58 1","pages":"12"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-025-00593-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ischemic reperfusion (IR) generates reactive oxygen species (ROS) that inevitably result in myocardial cell death and heart failure. The regenerative power of cardiac progenitor/stem pools (CSCs), especially the Sca1+ population, in response to IR injury remains unclear.

Methods: Our work sought to investigate whether small extracellular vesicles (sEVs) isolated from bone marrow-mesenchymal stem cells (BMMSCs) could rescue CSCs, specifically Sca-1+/CSCs, from IR by increasing their proliferative capacity and limiting their apoptosis in vitro. The Sca-1+/CSCs-IR model was induced by the oxygen-glucose deprivation/reoxygenation method (OGD/R). The effects of treatment with BMMSCs-derived sEVs on oxidative stress, cell proliferation, apoptosis, and cell cycle were assessed. To further test the mechanistic action, we assessed the PTEN/pAkt/HIF-1α pathway.

Results: Compared to hypoxic untreated CSCs, BMMSCs-derived sEVs-treated cells had shifted from their quiescent to proliferative phase (p > 0.05) and showed decreased apoptosis (p < 0.001). sEVs-treated CSCs were predominately in the S phase (11.8 ± 0.9%) (p < 0.01). We identified an abundance of miRNA-21-5P in BMMSCs. HIF-1α expression was highest in CSCs treated with sEVs (p < 0.05). Moreover, miRNA-21-5p-rich sEVs shifted the redox state, reducing oxidative stress and promoting balance (p > 0.05).

Conclusion: Conditioning Sca-1+/CSCs, an essential population in the postnatal heart, with sEVs rich in miRNA-21 robustly enhanced the proliferation, and synthesis phase of the cell cycle, and stabilized HIF-1α while alleviating oxidative stress and apoptosis. Such sEVs rich in miRNA-21-5p can be further used as a preconditioning tool to enhance endogenous Sca-1+/CSCs regeneration in response to IR injury.

细胞外小泡可提高Sca-1+心脏干细胞的存活率,使其免受ROS诱导的体外缺血缺氧损伤。
背景:缺血再灌注(IR)产生活性氧(ROS),不可避免地导致心肌细胞死亡和心力衰竭。心脏祖细胞/干细胞库(CSCs),特别是Sca1+群体,在IR损伤反应中的再生能力尚不清楚。方法:我们的工作旨在研究从骨髓间充质干细胞(BMMSCs)中分离的小细胞外囊泡(sev)是否可以通过增加其增殖能力和限制其体外凋亡来拯救CSCs,特别是Sca-1+/CSCs。采用氧-葡萄糖剥夺/再氧化法(OGD/R)诱导Sca-1+/CSCs-IR模型。评估bmmscs衍生的sev对氧化应激、细胞增殖、细胞凋亡和细胞周期的影响。为了进一步测试其机制作用,我们评估了PTEN/pAkt/HIF-1α途径。结果:与缺氧处理的CSCs相比,sevs处理的bmmscs来源的细胞从静止期转向增殖期(p >.05),凋亡减少(p 0.05)。结论:用富含miRNA-21的sev调节出生后心脏的重要群体Sca-1+/CSCs,可显著增强细胞周期的增殖和合成阶段,稳定HIF-1α,同时减轻氧化应激和细胞凋亡。这些富含miRNA-21-5p的sev可以进一步用作预处理工具,以增强内源性Sca-1+/CSCs在IR损伤后的再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信