{"title":"Dorsal root ganglion-derived exosomes deteriorate neuropathic pain by activating microglia via the microRNA-16-5p/HECTD1/HSP90 axis.","authors":"Yinghao Xing, Pei Li, Yuanyuan Jia, Kexin Zhang, Ming Liu, Jingjing Jiang","doi":"10.1186/s40659-024-00513-1","DOIUrl":"10.1186/s40659-024-00513-1","url":null,"abstract":"<p><strong>Background: </strong>The activated microglia have been reported as pillar factors in neuropathic pain (NP) pathology, but the molecules driving pain-inducible microglial activation require further exploration. In this study, we investigated the effect of dorsal root ganglion (DRG)-derived exosomes (Exo) on microglial activation and the related mechanism.</p><p><strong>Methods: </strong>A mouse model of NP was generated by spinal nerve ligation (SNL), and DRG-derived Exo were extracted. The effects of DRG-Exo on NP and microglial activation in SNL mice were evaluated using behavioral tests, HE staining, immunofluorescence, and western blot. Next, the differentially enriched microRNAs (miRNAs) in DRG-Exo-treated microglia were analyzed using microarrays. RT-qPCR, RNA pull-down, dual-luciferase reporter assay, and immunofluorescence were conducted to verify the binding relation between miR-16-5p and HECTD1. Finally, the effects of ubiquitination modification of HSP90 by HECTD1 on NP progression and microglial activation were investigated by Co-IP, western blot, immunofluorescence assays, and rescue experiments.</p><p><strong>Results: </strong>DRG-Exo aggravated NP resulting from SNL in mice, promoted the activation of microglia in DRG, and increased neuroinflammation. miR-16-5p knockdown in DRG-Exo alleviated the stimulating effects of DRG-Exo on NP and microglial activation. DRG-Exo regulated the ubiquitination of HSP90 through the interaction between miR-16-5p and HECTD1. Ubiquitination alteration of HSP90 was involved in microglial activation during NP.</p><p><strong>Conclusions: </strong>miR-16-5p shuttled by DRG-Exo regulated the ubiquitination of HSP90 by interacting with HECTD1, thereby contributing to the microglial activation in NP.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"28"},"PeriodicalIF":4.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MicroRNA-721 regulates gluconeogenesis via KDM2A-mediated epigenetic modulation in diet-induced insulin resistance in C57BL/6J mice.","authors":"Shaheen Wasil Kabeer, Shivam Sharma, Shalemraju Sriramdasu, Kulbhushan Tikoo","doi":"10.1186/s40659-024-00495-0","DOIUrl":"10.1186/s40659-024-00495-0","url":null,"abstract":"<p><strong>Background: </strong>Aberrant gluconeogenesis is considered among primary drivers of hyperglycemia under insulin resistant conditions, with multiple studies pointing towards epigenetic dysregulation. Here we examine the role of miR-721 and effect of epigenetic modulator laccaic acid on the regulation of gluconeogenesis under high fat diet induced insulin resistance.</p><p><strong>Results: </strong>Reanalysis of miRNA profiling data of high-fat diet-induced insulin-resistant mice model, GEO dataset (GSE94799) revealed a significant upregulation of miR-721, which was further validated in invivo insulin resistance in mice and invitro insulin resistance in Hepa 1-6 cells. Interestingly, miR-721 mimic increased glucose production in Hepa 1-6 cells via activation of FOXO1 regulated gluconeogenic program. Concomitantly, inhibition of miR-721 reduced glucose production in palmitate induced insulin resistant Hepa 1-6 cells by blunting the FOXO1 induced gluconeogenesis. Intriguingly, at epigenetic level, enrichment of the transcriptional activation mark H3K36me2 got decreased around the FOXO1 promoter. Additionally, identifying targets of miR-721 using miRDB.org showed H3K36me2 demethylase KDM2A as a potential target. Notably, miR-721 inhibitor enhanced KDM2A expression which correlated with H3K36me2 enrichment around FOXO1 promoter and the downstream activation of the gluconeogenic pathway. Furthermore, inhibition of miR-721 in high-fat diet-induced insulin-resistant mice resulted in restoration of KDM2A levels, concomitantly reducing FOXO1, PCK1, and G6PC expression, attenuating gluconeogenesis, hyperglycemia, and improving glucose tolerance. Interestingly, the epigenetic modulator laccaic acid also reduced the hepatic miR-721 expression and improved KDM2A expression, supporting our earlier report that laccaic acid attenuates insulin resistance by reducing gluconeogenesis.</p><p><strong>Conclusion: </strong>Our study unveils the role of miR-721 in regulating gluconeogenesis through KDM2A and FOXO1 under insulin resistance, pointing towards significant clinical and therapeutic implications for metabolic disorders. Moreover, the promising impact of laccaic acid highlights its potential as a valuable intervention in managing insulin resistance-associated metabolic diseases.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"27"},"PeriodicalIF":4.3,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucie Aumailley, Antoine Bodein, Pauline Adjibade, Mickaël Leclercq, Sylvie Bourassa, Arnaud Droit, Rachid Mazroui, Michel Lebel
{"title":"Combined transcriptomics and proteomics unveil the impact of vitamin C in modulating specific protein abundance in the mouse liver.","authors":"Lucie Aumailley, Antoine Bodein, Pauline Adjibade, Mickaël Leclercq, Sylvie Bourassa, Arnaud Droit, Rachid Mazroui, Michel Lebel","doi":"10.1186/s40659-024-00509-x","DOIUrl":"10.1186/s40659-024-00509-x","url":null,"abstract":"<p><strong>Background: </strong>Vitamin C (ascorbate) is a water-soluble antioxidant and an important cofactor for various biosynthetic and regulatory enzymes. Mice can synthesize vitamin C thanks to the key enzyme gulonolactone oxidase (Gulo) unlike humans. In the current investigation, we used Gulo<sup>-/-</sup> mice, which cannot synthesize their own ascorbate to determine the impact of this vitamin on both the transcriptomics and proteomics profiles in the whole liver. The study included Gulo<sup>-/-</sup> mouse groups treated with either sub-optimal or optimal ascorbate concentrations in drinking water. Liver tissues of females and males were collected at the age of four months and divided for transcriptomics and proteomics analysis. Immunoblotting, quantitative RT-PCR, and polysome profiling experiments were also conducted to complement our combined omics studies.</p><p><strong>Results: </strong>Principal component analyses revealed distinctive differences in the mRNA and protein profiles as a function of sex between all the mouse cohorts. Despite such sexual dimorphism, Spearman analyses of transcriptomics data from females and males revealed correlations of hepatic ascorbate levels with transcripts encoding a wide array of biological processes involved in glucose and lipid metabolisms as well as in the acute-phase immune response. Moreover, integration of the proteomics data showed that ascorbate modulates the abundance of various enzymes involved in lipid, xenobiotic, organic acid, acetyl-CoA, and steroid metabolism mainly at the transcriptional level, especially in females. However, several proteins of the mitochondrial complex III significantly correlated with ascorbate concentrations in both males and females unlike their corresponding transcripts. Finally, poly(ribo)some profiling did not reveal significant enrichment difference for these mitochondrial complex III mRNAs between Gulo<sup>-/-</sup> mice treated with sub-optimal and optimal ascorbate levels.</p><p><strong>Conclusions: </strong>Thus, the abundance of several subunits of the mitochondrial complex III are regulated by ascorbate at the post-transcriptional levels. Our extensive omics analyses provide a novel resource of altered gene expression patterns at the transcriptional and post-transcriptional levels under ascorbate deficiency.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"26"},"PeriodicalIF":6.7,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11088995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel role of LLGL2 silencing in autophagy: reversing epithelial-mesenchymal transition in prostate cancer.","authors":"Geum-Lan Hong, Kyung-Hyun Kim, Yae-Ji Kim, Hui-Ju Lee, Sung-Pil Cho, Seung-Yun Han, Seung Woo Yang, Jong-Soo Lee, Shin-Kwang Kang, Jae-Sung Lim, Ju-Young Jung","doi":"10.1186/s40659-024-00499-w","DOIUrl":"10.1186/s40659-024-00499-w","url":null,"abstract":"<p><strong>Purpose: </strong>Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo.</p><p><strong>Methods: </strong>PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model.</p><p><strong>Results: </strong>In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition.</p><p><strong>Conclusion: </strong>Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"25"},"PeriodicalIF":6.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sylvana I S Rendeiro de Noronha, Lauro Angelo Gonçalves de Moraes, James E Hassell, Christopher E Stamper, Mathew R Arnold, Jared D Heinze, Christine L Foxx, Margaret M Lieb, Kristin E Cler, Bree L Karns, Sophia Jaekel, Kelsey M Loupy, Fernanda C S Silva, Deoclécio Alves Chianca-Jr, Christopher A Lowry, Rodrigo Cunha de Menezes
{"title":"High-fat diet, microbiome-gut-brain axis signaling, and anxiety-like behavior in male rats.","authors":"Sylvana I S Rendeiro de Noronha, Lauro Angelo Gonçalves de Moraes, James E Hassell, Christopher E Stamper, Mathew R Arnold, Jared D Heinze, Christine L Foxx, Margaret M Lieb, Kristin E Cler, Bree L Karns, Sophia Jaekel, Kelsey M Loupy, Fernanda C S Silva, Deoclécio Alves Chianca-Jr, Christopher A Lowry, Rodrigo Cunha de Menezes","doi":"10.1186/s40659-024-00505-1","DOIUrl":"10.1186/s40659-024-00505-1","url":null,"abstract":"<p><p>Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"23"},"PeriodicalIF":6.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Binan Zhao, Haoran Peng, Yanjing Zhang, Jie Zhang, Desheng Kong, Sai Cao, Yan Li, Dan Yang, Chuanwen Sun, Xinyi Pu, Ping Zhao, Yan Xu, Kai Zhao, Liangzhi Xie
{"title":"Rapid development and mass production of SARS-CoV-2 neutralizing chicken egg yolk antibodies with protective efficacy in hamsters.","authors":"Binan Zhao, Haoran Peng, Yanjing Zhang, Jie Zhang, Desheng Kong, Sai Cao, Yan Li, Dan Yang, Chuanwen Sun, Xinyi Pu, Ping Zhao, Yan Xu, Kai Zhao, Liangzhi Xie","doi":"10.1186/s40659-024-00508-y","DOIUrl":"10.1186/s40659-024-00508-y","url":null,"abstract":"<p><p>Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"24"},"PeriodicalIF":6.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Lange, Anna Kuntze, Neele Wüstmann, Theresa Reckers, Verena Humberg, Wilhelm G. Dirks, Sebastian Huss, Julia Vieler, Andres Jan Schrader, Martin Bögemann, Katrin Schlack, Christof Bernemann
{"title":"Establishment of primary prostate epithelial and tumorigenic cell lines using a non-viral immortalization approach","authors":"Simon Lange, Anna Kuntze, Neele Wüstmann, Theresa Reckers, Verena Humberg, Wilhelm G. Dirks, Sebastian Huss, Julia Vieler, Andres Jan Schrader, Martin Bögemann, Katrin Schlack, Christof Bernemann","doi":"10.1186/s40659-024-00507-z","DOIUrl":"https://doi.org/10.1186/s40659-024-00507-z","url":null,"abstract":"Research on prostate cancer is mostly performed using cell lines derived from metastatic disease, not reflecting stages of tumor initiation or early progression. Establishment of cancer cell lines derived from the primary tumor site has not been described so far. By definition, cancer cells are able to be cultured indefinitely, whereas normal epithelial cells undergo senescence in vitro. Epithelial cells can be immortalized, accomplished by using viral integration of immortalization factors. Viral approaches, however, might be impaired by regulatory and safety issues as well as random integration into regulatory genetic elements, modifying precise gene expression. We intend to use surgical specimen of prostate cancer patients to (i) prove for establishment of cancer cell lines, and (ii) perform non-viral, Sleeping Beauty (SB) transposase-based immortalization of prostate epithelial cells. Radical prostatectomy samples of prostate cancer patients (n = 4) were dissociated and cultured in vitro. Cells were cultivated either without or after non-viral, Sleeping-Beauty transposase-based stable transfection with immortalization factors SV40LT and hTERT. Established cell lines were analyzed in vitro and in vivo for characteristics of prostate (cancer) cells. Initial cell cultures without genetic manipulation underwent senescence within ≤ 15 passages, demonstrating inability to successfully derive primary prostate cancer cell lines. By using SB transposase-based integration of immortalization factors, we were able to establish primary prostate cell lines. Three out of four cell lines displayed epithelial characteristics, however without expression of prostate (cancer) characteristics, e.g., androgen receptor. In vivo, one cell line exhibited tumorigenic potential, yet characteristics of prostate adenocarcinoma were absent. Whereas no primary prostate cancer cell line could be established, we provide for the first-time immortalization of primary prostate cells using the SB transposase system, thereby preventing regulatory and molecular issues based on viral immortalization approaches. Although, none of the newly derived cell lines demonstrated prostate cancer characteristics, tumor formation was observed in one cell line. Given the non-prostate adenocarcinoma properties of the tumor, cells have presumably undergone oncogenic transformation rather than prostate cancer differentiation. Still, these cell lines might be used as a tool for research on prostate cancer initiation and early cancer progression.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"119 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Oyarzún-Cisterna, Cristián Gidi, Fernanda Raiqueo, Roberto Amigo, Camila Rivas, Marcela Torrejón, José L. Gutiérrez
{"title":"General regulatory factors exert differential effects on nucleosome sliding activity of the ISW1a complex","authors":"Andrea Oyarzún-Cisterna, Cristián Gidi, Fernanda Raiqueo, Roberto Amigo, Camila Rivas, Marcela Torrejón, José L. Gutiérrez","doi":"10.1186/s40659-024-00500-6","DOIUrl":"https://doi.org/10.1186/s40659-024-00500-6","url":null,"abstract":"Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"41 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omar I. Badr, Mohamed M. Kamal, Shohda A. El-Maraghy, Heba R. Ghaiad
{"title":"The effect of diabetes mellitus on differentiation of mesenchymal stem cells into insulin-producing cells","authors":"Omar I. Badr, Mohamed M. Kamal, Shohda A. El-Maraghy, Heba R. Ghaiad","doi":"10.1186/s40659-024-00502-4","DOIUrl":"https://doi.org/10.1186/s40659-024-00502-4","url":null,"abstract":"Diabetes mellitus (DM) is a global epidemic with increasing incidences. DM is a metabolic disease associated with chronic hyperglycemia. Aside from conventional treatments, there is no clinically approved cure for DM up till now. Differentiating mesenchymal stem cells (MSCs) into insulin-producing cells (IPCs) is a promising approach for curing DM. Our study was conducted to investigate the effect of DM on MSCs differentiation into IPCs in vivo and in vitro. We isolated adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of normal and STZ-induced diabetic Sprague–Dawley male rats. Afterwards, the in vitro differentiation of normal-Ad-MSCs (N-Ad-MSCs) and diabetic-Ad-MSCs (DM-Ad-MSCs) into IPCs was compared morphologically then through determining the gene expression of β-cell markers including neurogenin-3 (Ngn-3), homeobox protein (Nkx6.1), musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), and insulin-1 (Ins-1) and eventually, through performing glucose-stimulated insulin secretion test (GSIS). Finally, the therapeutic potential of N-Ad-MSCs and DM-Ad-MSCs transplantation was compared in vivo in STZ-induced diabetic animals. Our results showed no significant difference in the characteristics of N-Ad-MSCs and DM-Ad-MSCs. However, we demonstrated a significant difference in their abilities to differentiate into IPCs in vitro morphologically in addition to β-cell markers expression, and functional assessment via GSIS test. Furthermore, the abilities of both Ad-MSCs to control hyperglycemia in diabetic rats in vivo was assessed through measuring fasting blood glucose (FBGs), body weight (BW), histopathological examination of both pancreas and liver and immunoexpression of insulin in pancreata of study groups. Our findings reveal the effectiveness of N-Ad-MSCs in differentiating into IPCs in vitro and controlling the hyperglycemia of STZ-induced diabetic rats in vivo compared to DM-Ad-MSCs. ","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"1 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariela Puebla, Manuel F. Muñoz, Mauricio A. Lillo, Jorge E. Contreras, Xavier F. Figueroa
{"title":"Control of astrocytic Ca2+ signaling by nitric oxide-dependent S-nitrosylation of Ca2+ homeostasis modulator 1 channels","authors":"Mariela Puebla, Manuel F. Muñoz, Mauricio A. Lillo, Jorge E. Contreras, Xavier F. Figueroa","doi":"10.1186/s40659-024-00503-3","DOIUrl":"https://doi.org/10.1186/s40659-024-00503-3","url":null,"abstract":"Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"45 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}