Karina Cañón-Beltrán, Yulia N Cajas, Vasileios Almpanis, Sandra Guisado Egido, Alfonso Gutierrez-Adan, Encina M González, Dimitrios Rizos
{"title":"MicroRNA-148b secreted by bovine oviductal extracellular vesicles enhance embryo quality through BPM/TGF-beta pathway.","authors":"Karina Cañón-Beltrán, Yulia N Cajas, Vasileios Almpanis, Sandra Guisado Egido, Alfonso Gutierrez-Adan, Encina M González, Dimitrios Rizos","doi":"10.1186/s40659-024-00488-z","DOIUrl":"10.1186/s40659-024-00488-z","url":null,"abstract":"<p><strong>Background: </strong>Extracellular vesicles (EVs) and their cargoes, including MicroRNAs (miRNAs) play a crucial role in cell-to-cell communication. We previously demonstrated the upregulation of bta-mir-148b in EVs from oviductal fluid of cyclic cows. This miRNA is linked to the TGF-β pathway in the cell proliferation. Our aim was to verify whether miR-148b is taken up by embryos through gymnosis, validate its target genes, and investigate the effect of miR-148b supplementation on early embryo development and quality.</p><p><strong>Methods: </strong>Zygotes were cultured in SOF + 0.3% BSA (Control) or supplemented with: 1 µM miR-148b mimics during: D1-D7 (miR148b) or D1-D4 (miR148b-OV: representing miRNA effect in the oviduct) or D4-D7 (miR148b-UT: representing miRNA effect in the uterus) or 1 µM control mimics was used during: D1-D7 (CMimic). Embryos at ≥ 16-cells and D7 blastocysts (BD7) were collected to examine the mRNA abundance of transcripts linked to the TGF-β pathway (TGFBR2, SMAD1, SMAD2, SMAD3, SMAD5, BMPR2, RPS6KB1, POU5F1, NANOG), total cell number (TC), trophectoderm (TE), and inner cell mass (ICM) were also evaluated. One-way ANOVA was used for all analyses.</p><p><strong>Results: </strong>We demonstrated that miR-148b can be taken up in both 16-cell embryos and BD7 by gymnosis, and we observed a decrease in SMAD5 mRNA, suggesting it's a potential target of miR-148b. Cleavage and blastocysts rates were not affected in any groups; however, supplementation of miR-148b mimics had a positive effect on TC, TE and ICM, with values of 136.4 ± 1.6, 92.5 ± 0.9, 43.9 ± 1.3 for miR148b and 135.3 ± 1.5, 92.6 ± 1.2, 42.7 ± 0.8, for miR148b-OV group. Furthermore, mRNA transcripts of SMAD1 and SMAD5 were decreased (P ≤ 0.001) in 16-cell embryos and BD7 from miR148b and miR148b-OV groups, while POU5F1 and NANOG were upregulated (P ≤ 0.001) in BD7 and TGFBR2 was only downregulated in 16-cell embryos. pSMAD1/5 levels were higher in the miR148b and miR148b-OV groups.</p><p><strong>Conclusions: </strong>Our findings suggest that supplementation of bta-miR-148b mimics during the entire culture period (D1 - D7) or from D1 - D4 improves embryo quality and influences the TGF-β signaling pathway by altering the transcription of genes associated with cellular differentiation and proliferation. This highlights the importance of miR-148b on embryo quality and development.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"11"},"PeriodicalIF":6.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Luo, Lingxiao Zhang, Ning Su, Lerong Liu, Tongfeng Zhao
{"title":"YME1L-mediated mitophagy protects renal tubular cells against cellular senescence under diabetic conditions.","authors":"Yuanyuan Luo, Lingxiao Zhang, Ning Su, Lerong Liu, Tongfeng Zhao","doi":"10.1186/s40659-024-00487-0","DOIUrl":"10.1186/s40659-024-00487-0","url":null,"abstract":"<p><strong>Background: </strong>The senescence of renal tubular epithelial cells (RTECs) is crucial in the progression of diabetic kidney disease (DKD). Accumulating evidence suggests a close association between insufficient mitophagy and RTEC senescence. Yeast mitochondrial escape 1-like 1 (YME1L), an inner mitochondrial membrane metalloprotease, maintains mitochondrial integrity. Its functions in DKD remain unclear. Here, we investigated whether YME1L can prevent the progression of DKD by regulating mitophagy and cellular senescence.</p><p><strong>Methods: </strong>We analyzed YME1L expression in renal tubules of DKD patients and mice, explored transcriptomic changes associated with YME1L overexpression in RTECs, and assessed its impact on RTEC senescence and renal dysfunction using an HFD/STZ-induced DKD mouse model. Tubule-specific overexpression of YME1L was achieved through the use of recombinant adeno-associated virus 2/9 (rAAV 2/9). We conducted both in vivo and in vitro experiments to evaluate the effects of YME1L overexpression on mitophagy and mitochondrial function. Furthermore, we performed LC-MS/MS analysis to identify potential protein interactions involving YME1L and elucidate the underlying mechanisms.</p><p><strong>Results: </strong>Our findings revealed a significant decrease in YME1L expression in the renal tubules of DKD patients and mice. However, tubule-specific overexpression of YME1L significantly alleviated RTEC senescence and renal dysfunction in the HFD/STZ-induced DKD mouse model. Moreover, YME1L overexpression exhibited positive effects on enhancing mitophagy and improving mitochondrial function both in vivo and in vitro. Mechanistically, our LC-MS/MS analysis uncovered a crucial mitophagy receptor, BCL2-like 13 (BCL2L13), as an interacting partner of YME1L. Furthermore, YME1L was found to promote the phosphorylation of BCL2L13, highlighting its role in regulating mitophagy.</p><p><strong>Conclusions: </strong>This study provides compelling evidence that YME1L plays a critical role in protecting RTECs from cellular senescence and impeding the progression of DKD. Overexpression of YME1L demonstrated significant therapeutic potential by ameliorating both RTEC senescence and renal dysfunction in the DKD mice. Moreover, our findings indicate that YME1L enhances mitophagy and improves mitochondrial function, potentially through its interaction with BCL2L13 and subsequent phosphorylation. These novel insights into the protective mechanisms of YME1L offer a promising strategy for developing therapies targeting DKD.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"10"},"PeriodicalIF":6.7,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dianmei Yu, Haiyan Wang, Yiwen Zhai, Zhixiang Lei, Minglu Sun, Si Chen, Panfeng Yin, Xianchun Wang
{"title":"Effects of latroeggtoxin-VI on dopamine and α-synuclein in PC12 cells and the implications for Parkinson's disease.","authors":"Dianmei Yu, Haiyan Wang, Yiwen Zhai, Zhixiang Lei, Minglu Sun, Si Chen, Panfeng Yin, Xianchun Wang","doi":"10.1186/s40659-024-00489-y","DOIUrl":"10.1186/s40659-024-00489-y","url":null,"abstract":"<p><strong>Background: </strong>Parkinson's disease (PD) is characterized by death of dopaminergic neurons leading to dopamine deficiency, excessive α-synuclein facilitating Lewy body formation, etc. Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin discovered from the eggs of spider L. tredecimguttatus, was previously found to promote the synthesis and release of PC12 cells, showing a great potential as a drug candidate for PD. However, the relevant mechanisms have not been understood completely. The present study explored the mechanism underlying the effects of LETX-VI on dopamine and α-synuclein of PC12 cells and the implications for PD.</p><p><strong>Results: </strong>After PC12 cells were treated with LETX-VI, the level of dopamine was significantly increased in a dose-dependent way within a certain range of concentrations. Further mechanism analysis showed that LETX-VI upregulated the expression of tyrosine hydroxylase (TH) and L-dopa decarboxylase to enhance the biosynthesis of dopamine, and downregulated that of monoamine oxidase B to reduce the degradation of dopamine. At the same time, LETX-VI promoted the transport and release of dopamine through modulating the abundance and/or posttranslational modification of vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT). While the level of dopamine was increased by LETX-VI treatment, α-synuclein content was reduced by the spider toxin. α-Synuclein overexpression significantly decreased the dopamine level and LETX-VI efficiently alleviated the inhibitory action of excessive α-synuclein on dopamine. In the MPTP-induced mouse model of PD, application of LETX-VI ameliorated parkinsonian behaviors of the mice, and reduced the magnitude of MPTP-induced α-synuclein upregulation and TH downregulation. In addition, LETX-VI displayed neuroprotective effects by inhibiting MPTP-induced decrease in the numbers of TH-positive and Nissl-stained neurons in mouse brain tissues.</p><p><strong>Conclusions: </strong>All the results demonstrate that LETX-VI promotes the synthesis and release of dopamine in PC12 cells via multiple mechanisms including preventing abnormal α-synuclein accumulation, showing implications in the prevention and treatment of PD.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"9"},"PeriodicalIF":6.7,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140139882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matías Gálvez-Silva, Patricio Arros, Camilo Berríos-Pastén, Aura Villamil, Paula I. Rodas, Ingrid Araya, Rodrigo Iglesias, Pamela Araya, Juan C. Hormazábal, Constanza Bohle, Yahua Chen, Yunn-Hwen Gan, Francisco P. Chávez, Rosalba Lagos, Andrés E. Marcoleta
{"title":"Carbapenem-resistant hypervirulent ST23 Klebsiella pneumoniae with a highly transmissible dual-carbapenemase plasmid in Chile","authors":"Matías Gálvez-Silva, Patricio Arros, Camilo Berríos-Pastén, Aura Villamil, Paula I. Rodas, Ingrid Araya, Rodrigo Iglesias, Pamela Araya, Juan C. Hormazábal, Constanza Bohle, Yahua Chen, Yunn-Hwen Gan, Francisco P. Chávez, Rosalba Lagos, Andrés E. Marcoleta","doi":"10.1186/s40659-024-00485-2","DOIUrl":"https://doi.org/10.1186/s40659-024-00485-2","url":null,"abstract":"The convergence of hypervirulence and carbapenem resistance in the bacterial pathogen Klebsiella pneumoniae represents a critical global health concern. Hypervirulent K. pneumoniae (hvKp) strains, frequently from sequence type 23 (ST23) and having a K1 capsule, have been associated with severe community-acquired invasive infections. Although hvKp were initially restricted to Southeast Asia and primarily antibiotic-sensitive, carbapenem-resistant hvKp infections are reported worldwide. Here, within the carbapenemase production Enterobacterales surveillance system headed by the Chilean Public Health Institute, we describe the isolation in Chile of a high-risk ST23 dual-carbapenemase-producing hvKp strain, which carbapenemase genes are encoded in a single conjugative plasmid. Phenotypic and molecular tests of this strain revealed an extensive resistance to at least 15 antibiotic classes and the production of KPC-2 and VIM-1 carbapenemases. Unexpectedly, this isolate lacked hypermucoviscosity, challenging this commonly used hvKp identification criteria. Complete genome sequencing and analysis confirmed the K1 capsular type, the KpVP-1 virulence plasmid, and the GIE492 and ICEKp10 genomic islands carrying virulence factors strongly associated with hvKp. Although this isolate belonged to the globally disseminated hvKp clonal group CG23-I, it is unique, as it formed a clade apart from a previously reported Chilean ST23 hvKp isolate and acquired an IncN KPC-2 plasmid highly disseminated in South America (absent in other hvKp genomes), but now including a class-I integron carrying blaVIM−1 and other resistance genes. Notably, this isolate was able to conjugate the double carbapenemase plasmid to an E. coli recipient, conferring resistance to 1st -5th generation cephalosporins (including combinations with beta-lactamase inhibitors), penicillins, monobactams, and carbapenems. We reported the isolation in Chile of high-risk carbapenem-resistant hvKp carrying a highly transmissible conjugative plasmid encoding KPC-2 and VIM-1 carbapenemases, conferring resistance to most beta-lactams. Furthermore, the lack of hypermucoviscosity argues against this trait as a reliable hvKp marker. These findings highlight the rapid evolution towards multi-drug resistance of hvKp in Chile and globally, as well as the importance of conjugative plasmids and other mobile genetic elements in this convergence. In this regard, genomic approaches provide valuable support to monitor and obtain essential information on these priority pathogens and mobile elements.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"23 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140108169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piotr Rogujski, Barbara Lukomska, Miroslaw Janowski, Luiza Stanaszek
{"title":"Glial-restricted progenitor cells: a cure for diseased brain?","authors":"Piotr Rogujski, Barbara Lukomska, Miroslaw Janowski, Luiza Stanaszek","doi":"10.1186/s40659-024-00486-1","DOIUrl":"10.1186/s40659-024-00486-1","url":null,"abstract":"<p><p>The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"8"},"PeriodicalIF":6.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianqi Li, Rachel W S Chan, Raymond H W Li, Ernest H Y Ng, Songying Zhang, William S B Yeung
{"title":"Endometrial mesenchymal stromal/stem cells improve regeneration of injured endometrium in mice.","authors":"Tianqi Li, Rachel W S Chan, Raymond H W Li, Ernest H Y Ng, Songying Zhang, William S B Yeung","doi":"10.1186/s40659-024-00484-3","DOIUrl":"10.1186/s40659-024-00484-3","url":null,"abstract":"<p><strong>Background: </strong>The monthly regeneration of human endometrial tissue is maintained by the presence of human endometrial mesenchymal stromal/stem cells (eMSC), a cell population co-expressing the perivascular markers CD140b and CD146. Endometrial regeneration is impaired in the presence of intrauterine adhesions, leading to infertility, recurrent pregnancy loss and placental abnormalities. Several types of somatic stem cells have been used to repair the damaged endometrium in animal models, reporting successful pregnancy. However, the ability of endometrial stem cells to repair the damaged endometrium remains unknown.</p><p><strong>Methods: </strong>Electrocoagulation was applied to the left uterine horn of NOD/SCID mice causing endometrial injury. Human eMSC or PBS was then injected into the left injured horn while the right normal horn served as controls. Mice were sacrificed at different timepoints (Day 3, 7 and 14) and the endometrial morphological changes as well as the degree of endometrial injury and repair were observed by histological staining. Gene expression of various inflammatory markers was assessed using qPCR. The functionality of the repaired endometrium was evaluated by fertility test.</p><p><strong>Results: </strong>Human eMSC successfully incorporated into the injured uterine horn, which displayed significant morphological restoration. Also, endometrium in the eMSC group showed better cell proliferation and glands formation than the PBS group. Although the number of blood vessels were similar between the two groups, gene expression of VEGF-α significantly increased in the eMSC group. Moreover, eMSC had a positive impact on the regeneration of both stromal and epithelial components of the mouse endometrium, indicated by significantly higher vimentin and CK19 protein expression. Reduced endometrial fibrosis and down-regulation of fibrosis markers were also observed in the eMSC group. The eMSC group had a significantly higher gene expression of anti-inflammatory factor Il-10 and lower mRNA level of pro-inflammatory factors Ifng and Il-2, indicating the role of eMSC in regulation of inflammatory reactions. The eMSC group showed higher implantation sites than the PBS group, suggesting better endometrial receptivity with the presence of newly emerged endometrial lining.</p><p><strong>Conclusions: </strong>Our findings suggest eMSC improves regeneration of injured endometrium in mice.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"6"},"PeriodicalIF":6.7,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yentel Mateo-Otero, Marc Llavanera, Marc Torres-Garrido, Marc Yeste
{"title":"Embryo development is impaired by sperm mitochondrial-derived ROS.","authors":"Yentel Mateo-Otero, Marc Llavanera, Marc Torres-Garrido, Marc Yeste","doi":"10.1186/s40659-024-00483-4","DOIUrl":"10.1186/s40659-024-00483-4","url":null,"abstract":"<p><strong>Background: </strong>Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development.</p><p><strong>Results: </strong>We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation.</p><p><strong>Conclusion: </strong>Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"5"},"PeriodicalIF":4.3,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10825979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fibroblasts inhibit osteogenesis by regulating nuclear-cytoplasmic shuttling of YAP in mesenchymal stem cells and secreting DKK1","authors":"Fei Huang, Guozhen Wei, Hai Wang, Ying Zhang, Wenbin Lan, Yun Xie, Gui Wu","doi":"10.1186/s40659-023-00481-y","DOIUrl":"https://doi.org/10.1186/s40659-023-00481-y","url":null,"abstract":"Fibrous scars frequently form at the sites of bone nonunion when attempts to repair bone fractures have failed. However, the detailed mechanism by which fibroblasts, which are the main components of fibrous scars, impede osteogenesis remains largely unknown. In this study, we found that fibroblasts compete with osteogenesis in both human bone nonunion tissues and BMP2-induced ectopic osteogenesis in a mouse model. Fibroblasts could inhibit the osteoblastic differentiation of mesenchymal stem cells (MSCs) via direct and indirect cell competition. During this process, fibroblasts modulated the nuclear-cytoplasmic shuttling of YAP in MSCs. Knocking down YAP could inhibit osteoblast differentiation of MSCs, while overexpression of nuclear-localized YAP-5SA could reverse the inhibition of osteoblast differentiation of MSCs caused by fibroblasts. Furthermore, fibroblasts secreted DKK1, which further inhibited the formation of calcium nodules during the late stage of osteogenesis but did not affect the early stage of osteogenesis. Thus, fibroblasts could inhibit osteogenesis by regulating YAP localization in MSCs and secreting DKK1. Our research revealed that fibroblasts could modulate the nuclear-cytoplasmic shuttling of YAP in MSCs, thereby inhibiting their osteoblast differentiation. Fibroblasts could also secrete DKK1, which inhibited calcium nodule formation at the late stage of osteogenesis.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"138 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huan Liu, Huijuan Kuang, Yiru Wang, Lili Bao, Wanxin Cao, Lu Yu, Meihao Qi, Renfeng Wang, Xiaoshan Yang, Qingyuan Ye, Feng Ding, Lili Ren, Siying Liu, Furong Ma, Shiyu Liu
{"title":"MSC-derived exosomes protect auditory hair cells from neomycin-induced damage via autophagy regulation.","authors":"Huan Liu, Huijuan Kuang, Yiru Wang, Lili Bao, Wanxin Cao, Lu Yu, Meihao Qi, Renfeng Wang, Xiaoshan Yang, Qingyuan Ye, Feng Ding, Lili Ren, Siying Liu, Furong Ma, Shiyu Liu","doi":"10.1186/s40659-023-00475-w","DOIUrl":"10.1186/s40659-023-00475-w","url":null,"abstract":"<p><strong>Background: </strong>Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear.</p><p><strong>Results: </strong>Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity.</p><p><strong>Conclusions: </strong>In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"3"},"PeriodicalIF":6.7,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells.","authors":"Fiona Limanaqi, Silvia Zecchini, Irma Saulle, Sergio Strizzi, Claudia Vanetti, Micaela Garziano, Gioia Cappelletti, Debora Parolin, Sonia Caccia, Daria Trabattoni, Claudio Fenizia, Mario Clerici, Mara Biasin","doi":"10.1186/s40659-023-00482-x","DOIUrl":"10.1186/s40659-023-00482-x","url":null,"abstract":"<p><strong>Background: </strong>Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection.</p><p><strong>Results: </strong>Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-β, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium.</p><p><strong>Conclusions: </strong>Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"2"},"PeriodicalIF":6.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}