GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions.

IF 4.3 2区 生物学 Q1 BIOLOGY
Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez
{"title":"GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions.","authors":"Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez","doi":"10.1186/s40659-024-00560-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions.</p><p><strong>Methods: </strong>To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR.</p><p><strong>Results: </strong>HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability.</p><p><strong>Conclusions: </strong>The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"81"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-024-00560-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions.

Methods: To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR.

Results: HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability.

Conclusions: The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.

GLUT1 和肾素受体介导了高糖条件下肾内髓集合管细胞对 TGF-β 和 CTGF 的不同调控。
背景:糖尿病期间,肾集合管会大量分泌肾素。肾素与顶端质膜上的(原)肾素受体(PRR)结合后,会触发细胞内的坏死基因,包括 TGF-β 和 CTGF。然而,刺激这些通路的潜在机制仍不清楚。因此,我们假设葡萄糖转运体-1(GLUT1)在高葡萄糖(HG)条件下有利于PRR依赖性地刺激远端肾小管中的TGF-β和CTGF:为了验证这一假设,在有或没有 GLUT1 特异性抑制剂 BAY 876(2 nM)的情况下,用正常葡萄糖(NG,5 mM)或高葡萄糖(HG,25 mM)处理原代培养的肾内髓质集合管(IMCD)细胞 48 小时。此外,还用 PRR 拮抗剂 PRO20 处理 IMCD 细胞。通过免疫印迹和 qRT-PCR 对 TGF-β 和 CTGF 的表达进行量化:结果:HG 增加了 GLUT1 mRNA 和蛋白丰度,而 BAY 876 则抑制了这些反应。HG 处理会上调 PRR,但同时使用 BAY 876 可部分防止这种效应。用 HG 处理的 IMCD 细胞中,TGF-β 和 CTGF 的表达增加。然而,PRO20 可防止 TGF-β 的增加,但不能防止 CTGF 的增加。抑制 GLUT1 可部分防止 HG 期间活性氧(ROS)的增加,而 PRO20 则不能。清除 ROS 会抑制 CTGF 在 HG 条件下的上调。此外,长期暴露于 HG 会增加脂质过氧化并降低细胞活力:数据表明,葡萄糖通过 GLUT1 转运与 PRR 依赖性的 TGF-β 上调有关,而 CTGF 则主要通过依赖于肾髓质集合管细胞中 ROS 形成的机制介导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信