R. Ross, Ben Anderson, Brian Bienvenu, Emily L. Scicluna, K. Robert
{"title":"WildTrack: An IoT System for Tracking Passive-RFID Microchipped Wildlife for Ecology Research","authors":"R. Ross, Ben Anderson, Brian Bienvenu, Emily L. Scicluna, K. Robert","doi":"10.3390/automation3030022","DOIUrl":"https://doi.org/10.3390/automation3030022","url":null,"abstract":"Wildlife tracking is used to acquire information on the movement, behaviour and survival of animals in their natural habitat for a wide range of ecological questions. However, tracking and monitoring free-ranging animals in the field is typically labour-intensive and particularly difficult in species that are small, cryptic, or hard to re-capture. In this paper, we describe and evaluate an Internet-of-Things (IoT)-based tracking system which automatically logs detected passive RFID tags and uploads them to the cloud. This system was successfully evaluated with 90 sensor modules deployed in a 30 ha wildlife sanctuary to monitor a small nocturnal mammal of less than 20 g in body size.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79208360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Usländer, Michael Baumann, S. Boschert, R. Rosen, O. Sauer, Ljiljana Stojanović, J. C. Wehrstedt
{"title":"Symbiotic Evolution of Digital Twin Systems and Dataspaces","authors":"T. Usländer, Michael Baumann, S. Boschert, R. Rosen, O. Sauer, Ljiljana Stojanović, J. C. Wehrstedt","doi":"10.3390/automation3030020","DOIUrl":"https://doi.org/10.3390/automation3030020","url":null,"abstract":"This paper proposes to combine the concept of digital twins with the concept of dataspaces to fulfill the original expectation that a digital twin is a comprehensive virtual representation of physical assets. Based upon a terminological and conceptual discussion of digital twins and dataspaces, this paper claims that a systemic approach towards digital twin Systems is required. The key conceptual approach consists of a Reference Model for Digital Twin Systems (DTS-RM) and a hypothesis regarding a symbiotic evolution. The DTS-RM distinguishes between a digital twin back-end platform comprising the access and management of comprehensive digital twin instances and digital twin-related services, and digital twin front-end services that are tailored to the demands of applications and users. The main purpose of the back-end platform is to decouple the digital twin’s generation and management from the usage of the digital twin for applications.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84633623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. A. Rahman, Md Shihab Shakur, Md. Sharjil Ahamed, Shazid Hasan, Asif Adnan Rashid, Md. Ariful Islam, Md. Sabit Shahriar Haque, Afzaal Ahmed
{"title":"A Cloud-Based Cyber-Physical System with Industry 4.0: Remote and Digitized Additive Manufacturing","authors":"M. A. Rahman, Md Shihab Shakur, Md. Sharjil Ahamed, Shazid Hasan, Asif Adnan Rashid, Md. Ariful Islam, Md. Sabit Shahriar Haque, Afzaal Ahmed","doi":"10.3390/automation3030021","DOIUrl":"https://doi.org/10.3390/automation3030021","url":null,"abstract":"With the advancement of additive manufacturing (AM), or 3D printing technology, manufacturing industries are driving towards Industry 4.0 for dynamic changed in customer experience, data-driven smart systems, and optimized production processes. This has pushed substantial innovation in cyber-physical systems (CPS) through the integration of sensors, Internet-of-things (IoT), cloud computing, and data analytics leading to the process of digitization. However, computer-aided design (CAD) is used to generate G codes for different process parameters to input to the 3D printer. To automate the whole process, in this study, a customer-driven CPS framework is developed to utilize customer requirement data directly from the website. A cloud platform, Microsoft Azure, is used to send that data to the fused diffusion modelling (FDM)-based 3D printer for the automatic printing process. A machine learning algorithm, the multi-layer perceptron (MLP) neural network model, has been utilized for optimizing the process parameters in the cloud. For cloud-to-machine interaction, a Raspberry Pi is used to get access from the Azure IoT hub and machine learning studio, where the generated algorithm is automatically evaluated and determines the most suitable value. Moreover, the CPS system is used to improve product quality through the synchronization of CAD model inputs from the cloud platform. Therefore, the customer’s desired product will be available with minimum waste, less human monitoring, and less human interaction. The system contributes to the insight of developing a cloud-based digitized, automatic, remote system merging Industry 4.0 technologies to bring flexibility, agility, and automation to AM processes.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91309483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kazuki Nirayama, Shoichiro Takehara, S. Takayama, Yusuke Ito
{"title":"Experimental Examination of Automatic Tether Winding Method Using Kinetic Energy in Tether Space Mobility Device","authors":"Kazuki Nirayama, Shoichiro Takehara, S. Takayama, Yusuke Ito","doi":"10.3390/automation3030019","DOIUrl":"https://doi.org/10.3390/automation3030019","url":null,"abstract":"Tethers (strings and wires) are used in various mechanical systems because they are lightweight and have excellent storability. Examples of such systems include elevators and cranes. In recent years, the use of tethers in special environments, such as outer space, is expected, and various systems have been proposed. In this study, we propose a mobility system using a tether that moves a human by winding a tether attached to a wall. However, the method has a problem whereby the attitude of the human can lack stability during the winding of the tether. We developed the attitude control method of the Tether Space Mobility Device during tether winding while focusing on fluctuations in the rotational kinetic energy of systems. The effectiveness of the control method was shown using numerical simulation. In this paper, the proposed control system is installed in the experimental device for validating the numerical simulation model. Then, we verified the effectiveness of the proposed control method through experiments using an actual system. The experimental results confirm that the angular velocity of the Tether Space Mobility Device converges to 0 deg/s when control is applied. In addition, it was shown that the proposed control method is effective for automatically winding the tether.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84098109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mateusz Malarczyk, Mateusz Zychlewicz, Radoslaw Stanislawski, M. Kaminski
{"title":"Speed Control Based on State Vector Applied for Electrical Drive with Elastic Connection","authors":"Mateusz Malarczyk, Mateusz Zychlewicz, Radoslaw Stanislawski, M. Kaminski","doi":"10.3390/automation3030018","DOIUrl":"https://doi.org/10.3390/automation3030018","url":null,"abstract":"The paper is focused on issues related to the control of electrical drives with oscillations of state variables. The main problem deals with the construction of the mechanical part, which contains elastic elements used as a coupling between the motor machine and the load. In such cases, strict tracking of the reference trajectory is difficult, so damping of the disturbances is necessary. For this purpose, the full state vector of the object is applied as the feedback signal for the speed controller. This method is efficient and relatively easy to implement (including the hardware part). However, the control accuracy is dependent on the quality of the parameters identification and the invariance of the object. Thus, two adaptive structures are proposed for the two-mass system. Moreover, selected coefficients were optimized using metaheuristic algorithms (symbiotic organism search and flower pollination algorithm). After presentation of the preliminaries and mathematical background, tests were conducted, and the numerical simulations are shown. Finally, the experimental verification for the 0.5 kW DC machines was performed. The results confirm the theoretical concept and the initial assumptions: the state controller leads to the precise control of the drive with a long shaft; recalculation of the parameters can improve the work of the drive under changes of time constants; modern design tools are appropriate for this application.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80476391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Pappas, J. Siegel, E. Kassens-Noor, Jacob Rutkowski, K. Politopoulos, A. Zorpas
{"title":"Game-Based Simulation and Study of Pedestrian-Automated Vehicle Interactions","authors":"G. Pappas, J. Siegel, E. Kassens-Noor, Jacob Rutkowski, K. Politopoulos, A. Zorpas","doi":"10.3390/automation3030017","DOIUrl":"https://doi.org/10.3390/automation3030017","url":null,"abstract":"We identify the need for enhanced pedestrian–vehicle simulation tools and build such a tool to explore the interaction among pedestrian “players” and virtual human- and automated-vehicles for different scenarios taking place in an urban environment. We first present contemporary research tools and then propose the design and development of a new desktop application that facilitates pedestrian-point-of-view research. We then conduct a three-step user experience experiment, in which a small number of participants answer questions before and after using the application to interact with virtual human and automated vehicles in diverse road-crossing scenarios. Behavioral results observed in virtuality, especially when motivated by consequence, tend to simulate real life sufficiently well to inform design choices. From the simulation, we observed valuable insights into human–vehicle interactions. Upon completing this preliminary testing, we iterated the tool’s design and ultimately conducted an 89-participant study of human–vehicle interactions for three scenarios taking place in a virtual environment. Our tool raised participant awareness of autonomous vehicles and their capabilities and limitations, which is an important step in overcoming public distrust of AVs. We additionally saw that participants trust humans and technology less as drivers than in other contexts, and that pedestrians feel safer around vehicles with autonomy indicators. Further, we note that study participants increasingly feel safe with automated vehicles with increased exposure. These preliminary results, as well as the efficacy of the tool’s design, may inform future socio-technical design for automated vehicles and their human interactions.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89544742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and Analysis of Meteorological Contour Matching with Remote Sensor Data for Navigation","authors":"Louis A. Catalano, Zhiyong Hu, H. Sevil","doi":"10.3390/automation3020016","DOIUrl":"https://doi.org/10.3390/automation3020016","url":null,"abstract":"This paper outlines the methods, results, and statistical analysis of a model we developed to demonstrate the feasibility of applying remote sensor meteorological data to navigation by using meteorological contour matching (METCOM). Terrain contour matching (TERCOM), a contemporary navigation system, possesses inherent performance flaws that may be resolved and improved by METCOM for subsonic and hypersonic missile or aircraft navigation. Remote sensor imagery data for this model was accessed from the Geostationary Operational Environmental Satellites-R Series operated by the National Oceanic and Atmospheric Administration by using Amazon Web Services through a script we developed in Python. Data processed for the model included imagery data and corresponding geospatial data from the legacy atmospheric profile products: legacy vertical temperature and legacy vertical moisture. Our analysis of the model included an error assessment to determine model accuracy, geostatistical analysis through semivariograms, meteorological signal of model data, and a combinatorial analysis to evaluate navigation performance. We conducted a model assessment which indicated an accuracy of 66.2% in the data used as a combined result of instrument error and interference of cloud formations. Results of the remaining analysis offered methods to evaluate METCOM performance and compare different meteorological data products. These results allowed us to statistically compare METCOM and TERCOM, yielding several indications of improved performance including an increase by a factor of at least 13.5 in data variability and contourability. The analysis we conducted served as a proof of concept to justify further research into the feasibility and application of METCOM.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91171803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward more realistic social distancing policies via advanced feedback control","authors":"C. Join, A. d’Onofrio, M. Fliess","doi":"10.1101/2022.05.25.22275562","DOIUrl":"https://doi.org/10.1101/2022.05.25.22275562","url":null,"abstract":"A continuously time-varying transmission rate is suggested by many control-theoretic investigations on non-pharmaceutical interventions for mitigating the COVID-19 pandemic. However, such a continuously varying rate is impossible to implement in any human society. Here, we significantly extend a preliminary work (M. Fliess, C. Join, A. d'Onofrio, Feedback control of social distancing for COVID-19 via elementary formulae, MATHMOD, Vienna, 2022), based on the combination of flatness-based and model-free controls of the classic SIR model. Indeed, to take into account severe uncertainties and perturbations, we propose a feedback control where the transmission rate, i.e., the control variable, is piecewise constant. More precisely, the transmission rate remains constant during an appreciable time interval. Strict extended lockdowns may therefore be avoided. The poor knowledge of fundamental quantities such as the rate of infection hinders a precise calibration of the transmission rate. Thus, the results of our approach ought therefore not to be regarded as rules of action to follow accurately but as a guideline for a wise behavior.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81435667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Combined Homing Trajectory Optimization Method of the Parafoil System Considering Intricate Constraints","authors":"W. He, Jiayan Wen, Jin Tao, Qinglin Sun","doi":"10.3390/automation3020014","DOIUrl":"https://doi.org/10.3390/automation3020014","url":null,"abstract":"In order to achieve an accurate airdrop in the actual environment, the influence of complex interferences, such as wind field and the terrain of the environment, must be taken into account. Aiming at this problem, a combined trajectory planning strategy of a parafoil system subjected to intricate conditions is proposed in this paper. This method divides the parafoil airdrop area into an obstacle area and a landing area, then, considering the terrain environment surface, a model for the parafoil system in the wind field is built in the obstacle area. The Gauss pseudo-spectral method is used to transform the complex terrain environment constraint into a series of nonlinear optimal control problems with complex constraints. Finally, the trajectory of the landing area is designed by means of multiphase homing, and the target parameters are solved by the improved marine predator algorithm. The simulation results show that the proposed method has better realizability than a single homing strategy, and the optimization results of the improved marine predator algorithm have higher accuracy.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75500329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inspection Application in an Industrial Environment with Collaborative Robots","authors":"Paulo Magalhaes, Nuno Ferreira","doi":"10.3390/automation3020013","DOIUrl":"https://doi.org/10.3390/automation3020013","url":null,"abstract":"In this study, we analyze the potential of collaborative robotics in automated quality inspections in the industry. The development of a solution integrating an industrial vision system allowed evaluating the performance of collaborative robots in a real case. The use of these tools allows reducing quality defects as well as costs in the manufacturing process. In this system, image processing methods use resources based on depth and surface measurements with high precision. The system fully processes a panel, observing the state of the surface to detect any potential defect in the panels produced to increase the quality of production.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90132648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}