基于云的信息物理系统与工业4.0:远程和数字化增材制造

M. A. Rahman, Md Shihab Shakur, Md. Sharjil Ahamed, Shazid Hasan, Asif Adnan Rashid, Md. Ariful Islam, Md. Sabit Shahriar Haque, Afzaal Ahmed
{"title":"基于云的信息物理系统与工业4.0:远程和数字化增材制造","authors":"M. A. Rahman, Md Shihab Shakur, Md. Sharjil Ahamed, Shazid Hasan, Asif Adnan Rashid, Md. Ariful Islam, Md. Sabit Shahriar Haque, Afzaal Ahmed","doi":"10.3390/automation3030021","DOIUrl":null,"url":null,"abstract":"With the advancement of additive manufacturing (AM), or 3D printing technology, manufacturing industries are driving towards Industry 4.0 for dynamic changed in customer experience, data-driven smart systems, and optimized production processes. This has pushed substantial innovation in cyber-physical systems (CPS) through the integration of sensors, Internet-of-things (IoT), cloud computing, and data analytics leading to the process of digitization. However, computer-aided design (CAD) is used to generate G codes for different process parameters to input to the 3D printer. To automate the whole process, in this study, a customer-driven CPS framework is developed to utilize customer requirement data directly from the website. A cloud platform, Microsoft Azure, is used to send that data to the fused diffusion modelling (FDM)-based 3D printer for the automatic printing process. A machine learning algorithm, the multi-layer perceptron (MLP) neural network model, has been utilized for optimizing the process parameters in the cloud. For cloud-to-machine interaction, a Raspberry Pi is used to get access from the Azure IoT hub and machine learning studio, where the generated algorithm is automatically evaluated and determines the most suitable value. Moreover, the CPS system is used to improve product quality through the synchronization of CAD model inputs from the cloud platform. Therefore, the customer’s desired product will be available with minimum waste, less human monitoring, and less human interaction. The system contributes to the insight of developing a cloud-based digitized, automatic, remote system merging Industry 4.0 technologies to bring flexibility, agility, and automation to AM processes.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Cloud-Based Cyber-Physical System with Industry 4.0: Remote and Digitized Additive Manufacturing\",\"authors\":\"M. A. Rahman, Md Shihab Shakur, Md. Sharjil Ahamed, Shazid Hasan, Asif Adnan Rashid, Md. Ariful Islam, Md. Sabit Shahriar Haque, Afzaal Ahmed\",\"doi\":\"10.3390/automation3030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of additive manufacturing (AM), or 3D printing technology, manufacturing industries are driving towards Industry 4.0 for dynamic changed in customer experience, data-driven smart systems, and optimized production processes. This has pushed substantial innovation in cyber-physical systems (CPS) through the integration of sensors, Internet-of-things (IoT), cloud computing, and data analytics leading to the process of digitization. However, computer-aided design (CAD) is used to generate G codes for different process parameters to input to the 3D printer. To automate the whole process, in this study, a customer-driven CPS framework is developed to utilize customer requirement data directly from the website. A cloud platform, Microsoft Azure, is used to send that data to the fused diffusion modelling (FDM)-based 3D printer for the automatic printing process. A machine learning algorithm, the multi-layer perceptron (MLP) neural network model, has been utilized for optimizing the process parameters in the cloud. For cloud-to-machine interaction, a Raspberry Pi is used to get access from the Azure IoT hub and machine learning studio, where the generated algorithm is automatically evaluated and determines the most suitable value. Moreover, the CPS system is used to improve product quality through the synchronization of CAD model inputs from the cloud platform. Therefore, the customer’s desired product will be available with minimum waste, less human monitoring, and less human interaction. The system contributes to the insight of developing a cloud-based digitized, automatic, remote system merging Industry 4.0 technologies to bring flexibility, agility, and automation to AM processes.\",\"PeriodicalId\":90013,\"journal\":{\"name\":\"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/automation3030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/automation3030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着增材制造(AM)或3D打印技术的进步,制造业正朝着工业4.0的方向发展,以实现客户体验的动态变化、数据驱动的智能系统和优化的生产流程。这推动了网络物理系统(CPS)的实质性创新,通过传感器、物联网(IoT)、云计算和数据分析的集成,导致了数字化进程。然而,计算机辅助设计(CAD)用于生成不同工艺参数的G代码,并输入到3D打印机。为了实现整个过程的自动化,本研究开发了一个客户驱动的CPS框架,以直接利用来自网站的客户需求数据。使用微软Azure云平台将数据发送到基于融合扩散建模(FDM)的3D打印机,以进行自动打印过程。一种机器学习算法,多层感知器(MLP)神经网络模型,被用于优化云中的过程参数。对于云到机器的交互,树莓派被用来访问Azure物联网中心和机器学习工作室,在那里生成的算法被自动评估并确定最合适的值。此外,通过同步来自云平台的CAD模型输入,使用CPS系统来提高产品质量。因此,客户所需的产品将以最小的浪费、更少的人工监控和更少的人工交互提供。该系统有助于开发基于云的数字化、自动化、远程系统,并融合工业4.0技术,为增材制造过程带来灵活性、敏捷性和自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cloud-Based Cyber-Physical System with Industry 4.0: Remote and Digitized Additive Manufacturing
With the advancement of additive manufacturing (AM), or 3D printing technology, manufacturing industries are driving towards Industry 4.0 for dynamic changed in customer experience, data-driven smart systems, and optimized production processes. This has pushed substantial innovation in cyber-physical systems (CPS) through the integration of sensors, Internet-of-things (IoT), cloud computing, and data analytics leading to the process of digitization. However, computer-aided design (CAD) is used to generate G codes for different process parameters to input to the 3D printer. To automate the whole process, in this study, a customer-driven CPS framework is developed to utilize customer requirement data directly from the website. A cloud platform, Microsoft Azure, is used to send that data to the fused diffusion modelling (FDM)-based 3D printer for the automatic printing process. A machine learning algorithm, the multi-layer perceptron (MLP) neural network model, has been utilized for optimizing the process parameters in the cloud. For cloud-to-machine interaction, a Raspberry Pi is used to get access from the Azure IoT hub and machine learning studio, where the generated algorithm is automatically evaluated and determines the most suitable value. Moreover, the CPS system is used to improve product quality through the synchronization of CAD model inputs from the cloud platform. Therefore, the customer’s desired product will be available with minimum waste, less human monitoring, and less human interaction. The system contributes to the insight of developing a cloud-based digitized, automatic, remote system merging Industry 4.0 technologies to bring flexibility, agility, and automation to AM processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信