Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation最新文献

筛选
英文 中文
Application of Task-Aligned Model Based on Defect Detection 基于缺陷检测的任务对齐模型的应用
Ming-Hung Hung, Chao-Hsun Ku, Kai-Ying Chen
{"title":"Application of Task-Aligned Model Based on Defect Detection","authors":"Ming-Hung Hung, Chao-Hsun Ku, Kai-Ying Chen","doi":"10.3390/automation4040019","DOIUrl":"https://doi.org/10.3390/automation4040019","url":null,"abstract":"In recent years, with the rise of the automation wave, reducing manual judgment, especially in defect detection in factories, has become crucial. The automation of image recognition has emerged as a significant challenge. However, the problem of how to effectively improve the classification of defect detection and the accuracy of the mean average precision (mAP) is a continuous process of improvement and has evolved from the original visual inspection of defects to the present deep learning detection system. This paper presents an application of deep learning, and the task-aligned approach is firstly used on metal defects, and the anchor and bounding box of objects and categories are continuously optimized by mutual correction. We used the task-aligned one-stage object detection (TOOD) model, then improved and optimized it, followed by deformable ConvNets v2 (DCNv2) to adjust the deformable convolution, and finally used soft efficient non-maximum suppression (Soft-NMS) to optimize intersection over union (IoU) and adjust the IoU threshold and many other experiments. In the Northeastern University surface defect detection dataset (NEU-DET) for surface defect detection, mAP increased from 75.4% to 77.9%, a 2.5% increase in mAP, and mAP was also improved compared to existing advanced models, which has potential for future use.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous Navigation and Crop Row Detection in Vineyards Using Machine Vision with 2D Camera 基于机器视觉和2D相机的葡萄园自主导航和作物行检测
Enrico Mendez, Javier Piña Camacho, Jesús Arturo Escobedo Cabello, Alfonso Gómez-Espinosa
{"title":"Autonomous Navigation and Crop Row Detection in Vineyards Using Machine Vision with 2D Camera","authors":"Enrico Mendez, Javier Piña Camacho, Jesús Arturo Escobedo Cabello, Alfonso Gómez-Espinosa","doi":"10.3390/automation4040018","DOIUrl":"https://doi.org/10.3390/automation4040018","url":null,"abstract":"In order to improve agriculture productivity, autonomous navigation algorithms are being developed so that robots can navigate along agricultural environments to automatize tasks that are currently performed by hand. This work uses machine vision techniques such as the Otsu’s method, blob detection, and pixel counting to detect the center of the row. Additionally, a commutable control is implemented to autonomously navigate a vineyard. Experimental trials were conducted in an actual vineyard to validate the algorithm. In these trials show that the algorithm can successfully guide the robot through the row without any collisions. This algorithm offers a computationally efficient solution for vineyard row navigation, employing a 2D camera and the Otsu’s thresholding technique to ensure collision-free operation.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135925434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Criteria Design of Electric Transit Bus Based on Wireless Charging Infrastructure: A Case Study of Real Road Map in Wakefield 基于无线充电基础设施的电动公交多准则设计——以韦克菲尔德真实路线图为例
Arman Fathollahi, Meysam Gheisarnejad, Jalil Boudjadar, Sayed Yaser Derakhshandeh, Mohammad Hassan Khooban
{"title":"Multi-Criteria Design of Electric Transit Bus Based on Wireless Charging Infrastructure: A Case Study of Real Road Map in Wakefield","authors":"Arman Fathollahi, Meysam Gheisarnejad, Jalil Boudjadar, Sayed Yaser Derakhshandeh, Mohammad Hassan Khooban","doi":"10.3390/automation4030017","DOIUrl":"https://doi.org/10.3390/automation4030017","url":null,"abstract":"In this paper, a new design strategy is developed for the Wireless Charging Electric Transit Bus (WCETB). The technology is innovative in that the battery in the bus is charged while it is moving over the charging infrastructure. In particular, an improved version of the Whale Optimization Algorithm (IWOA) is adopted for the WCETB system in the road map of Wakefield City, located in the United Kingdom. The main challenge in the WCETB is to select the power transmitter and battery size efficiently from an economical point of view. For this purpose, both factors are considered in the objective function to achieve the benefits of WCETBs from an energy perspective. Two analytical economic design optimization models are developed in this work. The first model is the real- environment model, which considers a WCETB system operating under typical traffic conditions characterized by vehicle interactions and inherent uncertainties. In this scenario, vehicle speeds vary with time, and specific traffic routes may encounter congestion. The second model concentrates on a WCETB system operating in a traffic-free environment with minimal vehicle interactions and uncertainties. The IWOA is implemented for the WCETB to operate in the real environment. Under traffic-free environment conditions, we utilize mathematical procedures and General Algebraic Modeling System (GAMS) software to solve the optimization problem. This approach not only allows us to comprehensively analyze the WCETB system’s behavior but also examine the interactions among different components of the objective function and constraints. Finally, a comprehensive numerical analysis under various conditions, including changes in the number of buses and increases in the length of routes, is conducted.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135437921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Task Location to Improve Human–Robot Cooperation: A Condition Number-Based Approach 任务定位改善人机合作:一种基于条件数的方法
Abdel-Nasser Sharkawy
{"title":"Task Location to Improve Human–Robot Cooperation: A Condition Number-Based Approach","authors":"Abdel-Nasser Sharkawy","doi":"10.3390/automation4030016","DOIUrl":"https://doi.org/10.3390/automation4030016","url":null,"abstract":"This paper proposes and implements an approach to evaluate human–robot cooperation aimed at achieving high performance. Both the human arm and the manipulator are modeled as a closed kinematic chain. The proposed task performance criterion is based on the condition number of this closed kinematic chain. The robot end-effector is guided by the human operator via an admittance controller to complete a straight-line segment motion, which is the desired task. The best location of the selected task is determined by maximizing the minimum of the condition number along the path. The performance of the proposed approach is evaluated using a criterion related to ergonomics. The experiments are executed with several subjects using a KUKA LWR robot to repeat the specified motion to evaluate the introduced approach. A comparison is presented between the current proposed approach and our previously implemented approach where the task performance criterion was based on the manipulability index of the closed kinematic chain. The results reveal that the condition number-based approach improves the human–robot cooperation in terms of the achieved accuracy, stability, and human comfort, but at the expense of task speed and completion time. On the other hand, the manipulability-index-based approach improves the human–robot cooperation in terms of task speed and human comfort, but at the cost of the achieved accuracy.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91353378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Design of a Reaction Flywheel Speed Control System Based on ADRC 基于自抗扰控制器的反作用飞轮调速系统设计
Jiachen Song, Jianguo Guo, Changtao Qin, Wanliang Zhao
{"title":"The Design of a Reaction Flywheel Speed Control System Based on ADRC","authors":"Jiachen Song, Jianguo Guo, Changtao Qin, Wanliang Zhao","doi":"10.3390/automation4030015","DOIUrl":"https://doi.org/10.3390/automation4030015","url":null,"abstract":"The reaction flywheel is a crucial operational component within a satellite’s attitude control system. Enhancing the performance of the reaction flywheel speed control system holds significant importance for satellite attitude control. In this paper, an active disturbance rejection control (ADRC) approach is introduced to mitigate the impact of uncertain disturbances on reaction flywheel speed control precision. The reaction flywheel speed control system is designed as an ADRC controller due to the current challenge of measuring unknown disturbances accurately in the reaction flywheel system. To derive the rotor’s speed observation value and the estimated total disturbances value, the sampled data of the reaction flywheel rotor position and torque control signal are fed into the extended state observer. The estimated total disturbances value is compensated on feedforward control, which could mitigate significantly the effects of various nonlinear disturbances. The paper initially establishes the rationale behind the reaction flywheel ADRC controller through theoretical analysis, followed by analysis of the differences of performance of reaction flywheel control by the ADRC controller and the PID controller in MATLAB/SIMULINK. Simulation results demonstrate the evident advantages of the ADRC controller over the PID controller in terms of speed command tracking capability and disturbances suppression ability. Subsequently, the ADRC controller program and the PID controller program are implemented on the reaction flywheel control circuit, and experiments are conducted to contrast speed command tracking and disturbance suppression. Importantly, the experimental outcomes align with the simulation results.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83124793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can Artificial Neural Networks Be Used to Predict Bitcoin Data? 人工神经网络可以用来预测比特币数据吗?
T. Kristensen, Asgeir H. Sognefest
{"title":"Can Artificial Neural Networks Be Used to Predict Bitcoin Data?","authors":"T. Kristensen, Asgeir H. Sognefest","doi":"10.3390/automation4030014","DOIUrl":"https://doi.org/10.3390/automation4030014","url":null,"abstract":"Financial markets are complex, evolving dynamic systems. Due to their irregularity, financial time series forecasting is regarded as a rather challenging task. In recent years, artificial neural network applications in finance for such tasks as pattern recognition, classification, and time series forecasting have dramatically increased. The objective of this paper is to present this versatile framework and attempt to use it to predict the stock return series of four public-listed companies on the New York Stock Exchange. Our findings coincide with those of Burton Malkiel in his book, A Random Walk Down Wall Street; no conclusive evidence is found that our proposed models can predict the stock return series better than that of a random walk.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"345 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79642779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Dyna-Q for Rapid Learning and Improved Formation Achievement in Cooperative Transportation 基于深度Dyna-Q的协同运输快速学习与改进编队成就
A. Budiyanto, N. Matsunaga
{"title":"Deep Dyna-Q for Rapid Learning and Improved Formation Achievement in Cooperative Transportation","authors":"A. Budiyanto, N. Matsunaga","doi":"10.3390/automation4030013","DOIUrl":"https://doi.org/10.3390/automation4030013","url":null,"abstract":"Nowadays, academic research, disaster mitigation, industry, and transportation apply the cooperative multi-agent concept. A cooperative multi-agent system is a multi-agent system that works together to solve problems or maximise utility. The essential marks of formation control are how the multiple agents can reach the desired point while maintaining their position in the formation based on the dynamic conditions and environment. A cooperative multi-agent system closely relates to the formation change issue. It is necessary to change the arrangement of multiple agents according to the environmental conditions, such as when avoiding obstacles, applying different sizes and shapes of tracks, and moving different sizes and shapes of transport objects. Reinforcement learning is a good method to apply in a formation change environment. On the other hand, the complex formation control process requires a long learning time. This paper proposed using the Deep Dyna-Q algorithm to speed up the learning process while improving the formation achievement rate by tuning the parameters of the Deep Dyna-Q algorithm. Even though the Deep Dyna-Q algorithm has been used in many applications, it has not been applied in an actual experiment. The contribution of this paper is the application of the Deep Dyna-Q algorithm in formation control in both simulations and actual experiments. This study successfully implements the proposed method and investigates formation control in simulations and actual experiments. In the actual experiments, the Nexus robot with a robot operating system (ROS) was used. To confirm the communication between the PC and robots, camera processing, and motor controller, the velocities from the simulation were directly given to the robots. The simulations could give the same goal points as the actual experiments, so the simulation results approach the actual experimental results. The discount rate and learning rate values affected the formation change achievement rate, collision number among agents, and collisions between agents and transport objects. For learning rate comparison, DDQ (0.01) consistently outperformed DQN. DQN obtained the maximum −170 reward in about 130,000 episodes, while DDQ (0.01) could achieve this value in 58,000 episodes and achieved a maximum −160 reward. The application of an MEC (model error compensator) in the actual experiment successfully reduced the error movement of the robots so that the robots could produce the formation change appropriately.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87086272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automation Radiomics in Predicting Radiation Pneumonitis (RP) 自动化放射组学预测放射性肺炎(RP)
Sotiris Raptis, V. Softa, Georgios Angelidis, C. Ilioudis, K. Theodorou
{"title":"Automation Radiomics in Predicting Radiation Pneumonitis (RP)","authors":"Sotiris Raptis, V. Softa, Georgios Angelidis, C. Ilioudis, K. Theodorou","doi":"10.3390/automation4030012","DOIUrl":"https://doi.org/10.3390/automation4030012","url":null,"abstract":"Radiomics has shown great promise in predicting various diseases. Researchers have previously attempted to include radiomics in their automated detection, diagnosis, and segmentation algorithms, taking these steps based on the promising outcomes of radiomics-based studies. As a result of the increased attention given to this topic, numerous institutions have developed their own radiomics software. These packages, on the other hand, have been utilized interchangeably without regard for their fundamental differences. The primary purpose of this study was to explore benefits of predictive model performance for radiation pneumonitis (RP), which is the most frequent side effect of chest radiotherapy, and through this work, we developed a radiomics model based on deep learning that intends to increase RP prediction performance by combining more data points and digging deeper into these data. In order to evaluate the most popular machine learning models, radiographic characteristics were used, and we recorded the most important of them. The high dimensionality of radiomic datasets is a major issue. The method proposed for use in data problems is the synthetic minority oversampling technique, which we used in order to create a balanced dataset by leveraging suitable hardware and open-source software. The present study assessed the efficacy of various machine learning models, including logistic regression (LR), support vector machine (SVM), random forest (RF), and deep neural network (DNN), in predicting radiation pneumonitis by utilizing specific radiomics features. The findings of the study indicate that the four models displayed satisfactory efficacy in forecasting radiation pneumonitis. The DNN model demonstrated the highest area under the receiver operating curve (AUC-ROC) value, which was 0.87, suggesting its superior predictive capacity among the models considered. The AUC-ROC values for the random forest, SVM, and logistic regression models were 0.85, 0.83, and 0.81, respectively.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76568854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trajectory Control in Discrete-Time Nonlinear Coupling Dynamics of a Soft Exo-Digit and a Human Finger Using Input–Output Feedback Linearization 基于输入-输出反馈线性化的软外指与人指离散非线性耦合动力学轨迹控制
Umme Kawsar Alam, Kassidy Shedd, M. Haghshenas-Jaryani
{"title":"Trajectory Control in Discrete-Time Nonlinear Coupling Dynamics of a Soft Exo-Digit and a Human Finger Using Input–Output Feedback Linearization","authors":"Umme Kawsar Alam, Kassidy Shedd, M. Haghshenas-Jaryani","doi":"10.3390/automation4020011","DOIUrl":"https://doi.org/10.3390/automation4020011","url":null,"abstract":"This paper presents a quasi-static model-based control algorithm for controlling the motion of a soft robotic exo-digit with three independent actuation joints physically interacting with the human finger. A quasi-static analytical model of physical interaction between the soft exo-digit and a human finger model was developed. Then, the model was presented as a nonlinear discrete-time multiple-input multiple-output (MIMO) state-space representation for the control system design. Input–output feedback linearization was utilized and a control input was designed to linearize the input–output, where the input is the actuation pressure of an individual soft actuator, and the output is the pose of the human fingertip. The asymptotic stability of the nonlinear discrete-time system for trajectory tracking control is discussed. A soft robotic exoskeleton digit (exo-digit) and a 3D-printed human-finger model integrated with IMU sensors were used for the experimental test setup. An Arduino-based electro-pneumatic control hardware was developed to control the actuation pressure of the soft exo-digit. The effectiveness of the controller was examined through simulation studies and experimental testing for following different pose trajectories corresponding to the human finger pose during the activities of daily living. The model-based controller was able to follow the desired trajectories with a very low average root-mean-square error of 2.27 mm in the x-direction, 2.75 mm in the y-direction, and 3.90 degrees in the orientation of the human finger distal link about the z-axis.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87689390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hand-Eye Calibration via Linear and Nonlinear Regressions 通过线性和非线性回归的手眼校准
J. Sato
{"title":"Hand-Eye Calibration via Linear and Nonlinear Regressions","authors":"J. Sato","doi":"10.3390/automation4020010","DOIUrl":"https://doi.org/10.3390/automation4020010","url":null,"abstract":"For a robot to pick up an object viewed by a camera, the object’s position in the image coordinate system must be converted to the robot coordinate system. Recently, a neural network-based method was proposed to achieve this task. This methodology can accurately convert the object’s position despite errors and disturbances that arise in a real-world environment, such as the deflection of a robot arm triggered by changes in the robot’s posture. However, this method has some drawbacks, such as the need for significant effort in model selection, hyperparameter tuning, and lack of stability and interpretability in the learning results. To address these issues, a method involving linear and nonlinear regressions is proposed. First, linear regression is employed to convert the object’s position from the image coordinate system to the robot base coordinate system. Next, B-splines-based nonlinear regression is applied to address the errors and disturbances that occur in a real-world environment. Since this approach is more stable and has better calibration performance with interpretability as opposed to the recent method, it is more practical. In the experiment, calibration results were incorporated into a robot, and its performance was evaluated quantitatively. The proposed method achieved a mean position error of 0.5 mm, while the neural network-based method achieved an error of 1.1 mm.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73192244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信