BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad818a
Flavio Bonanini, Roelof Dinkelberg, Manuel Caro Torregrosa, Nienke Kortekaas, Tessa M S Hagens, Stéphane Treillard, Dorota Kurek, Vincent van Duinen, Paul Vulto, Kristin Bircsak
{"title":"A microvascularized<i>in vitro</i>liver model for disease modeling and drug discovery.","authors":"Flavio Bonanini, Roelof Dinkelberg, Manuel Caro Torregrosa, Nienke Kortekaas, Tessa M S Hagens, Stéphane Treillard, Dorota Kurek, Vincent van Duinen, Paul Vulto, Kristin Bircsak","doi":"10.1088/1758-5090/ad818a","DOIUrl":"10.1088/1758-5090/ad818a","url":null,"abstract":"<p><p>Drug discovery for complex liver diseases faces alarming attrition rates. The lack of non-clinical models that recapitulate key aspects of liver (patho)-physiology is likely contributing to the inefficiency of developing effective treatments. Of particular notice is the common omission of an organized microvascular component despite its importance in maintaining liver function and its involvement in the development of several pathologies. Increasing the complexity of<i>in vitro</i>models is usually associated with a lack of scalability and robustness which hinders their implementation in drug development pipelines. Here, we describe a comprehensive liver microphysiological system comprising stellates, liver-derived endothelial cells and hepatocytes conceived within a scalable and automated platform. We show that endothelial cells self-organize in a microvascular network when co-cultured with stellates in a hydrogel. In a tri-culture, hepatocytes polarize accordingly, with a basolateral side facing blood vessels and an apical side facing bile-canaliculi-like structures. Stellates interact and surround the hollow microvessels. Steatosis was induced by exogenous administration of fatty acids which could be prevented by co-administration of firsocostat. Administration of TGF-<i>β</i>resulted in an activated stellate cells phenotype which could be prevented by the co-administration of SB-431542. The model was implemented on a microtiter plate format comprising 64 chips which enabled the development of a fully automated, multiplexed fibrosis assay with a robust Z' factor suitable for high-throughput applications.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad7f8f
Nashaita Y Patrawalla, Karly Liebendorfer, Vipuil Kishore
{"title":"An innovative 4D printing approach for fabrication of anisotropic collagen scaffolds.","authors":"Nashaita Y Patrawalla, Karly Liebendorfer, Vipuil Kishore","doi":"10.1088/1758-5090/ad7f8f","DOIUrl":"10.1088/1758-5090/ad7f8f","url":null,"abstract":"<p><p>Collagen anisotropy is known to provide the essential topographical cues to guide tissue-specific cell function. Recent work has shown that extrusion-based printing using collagenous inks yield 3D scaffolds with high geometric precision and print fidelity. However, these scaffolds lack collagen anisotropy. In this study, extrusion-based 3D printing was combined with a magnetic alignment approach in an innovative 4D printing scheme to generate 3D collagen scaffolds with high degree of collagen anisotropy. Specifically, the 4D printing process parameters-collagen (Col):xanthan gum (XG) ratio (Col:XG; 1:1, 4:1, 9:1 v/v), streptavidin-coated magnetic particle concentration (SMP; 0, 0.2, 0.4 mg ml<sup>-1</sup>), and print flow speed (2, 3 mm s<sup>-1</sup>)-were modulated and the effects of these parameters on rheological properties, print fidelity, and collagen alignment were assessed. Further, the effects of collagen anisotropy on human mesenchymal stem cell (hMSC) morphology, orientation, metabolic activity, and ligamentous differentiation were investigated. Results showed that increasing the XG composition (Col:XG 1:1) enhanced ink viscosity and yielded scaffolds with good print fidelity but poor collagen alignment. On the other hand, use of inks with lower XG composition (Col:XG 4:1 and 9:1) together with 0.4 mg ml<sup>-1</sup>SMP concentration yielded scaffolds with high degree of collagen alignment albeit with suboptimal print fidelity. Modulating the print flow speed conditions (2 mm s<sup>-1</sup>) with 4:1 Col:XG inks and 0.4 mg ml<sup>-1</sup>SMP resulted in improved print fidelity of the collagen scaffolds while retaining high level of collagen anisotropy. Cell studies revealed hMSCs orient uniformly on aligned collagen scaffolds. More importantly, collagen anisotropy was found to trigger tendon or ligament-like differentiation of hMSCs. Together, these results suggest that 4D printing is a viable strategy to generate anisotropic collagen scaffolds with significant potential for use in tendon and ligament tissue engineering applications.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad847f
Taraka Sai Pavan Grandhi, Makda Mebrahtu, Ryan Musso, Alexis Fullman, Brady Nifong, Katrina Wisdom, Terrence T Roh, Matthew Sender, Derek Poore, Claire E Macdougall, Ravit Oren, Sue Griffin, Aaron T Cheng, Jason E Ekert
{"title":"A microphysiological assay for studying T-cell chemotaxis, trafficking and tumor killing.","authors":"Taraka Sai Pavan Grandhi, Makda Mebrahtu, Ryan Musso, Alexis Fullman, Brady Nifong, Katrina Wisdom, Terrence T Roh, Matthew Sender, Derek Poore, Claire E Macdougall, Ravit Oren, Sue Griffin, Aaron T Cheng, Jason E Ekert","doi":"10.1088/1758-5090/ad847f","DOIUrl":"10.1088/1758-5090/ad847f","url":null,"abstract":"<p><p>Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complex<i>in-vitro</i>models allow re-creation of<i>in-vivo</i>tumor complexities in an<i>in-vitro</i>setting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96-chip 2-lane microfluidic assay system, we present a novel, scalable, complex<i>in vitro</i>MPS assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (∼5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8. chimeric antigen receptor (CAR)-T cells that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad867e
Prabha Acharya, Sunil Shrestha, Pranav Joshi, Na Young Choi, Vinod Kumar Reddy Lekkala, Soo-Yeon Kang, Gabriel Ni, Moo-Yeal Lee
{"title":"Dynamic culture of cerebral organoids using a pillar/perfusion plate for the assessment of developmental neurotoxicity.","authors":"Prabha Acharya, Sunil Shrestha, Pranav Joshi, Na Young Choi, Vinod Kumar Reddy Lekkala, Soo-Yeon Kang, Gabriel Ni, Moo-Yeal Lee","doi":"10.1088/1758-5090/ad867e","DOIUrl":"10.1088/1758-5090/ad867e","url":null,"abstract":"<p><p>Despite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventional<i>in vitro</i>cell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable. Recently, human brain organoids have emerged as a promising alternative to assess the detrimental effects of chemicals on the developing brain. However, conventional organoid culture systems have several technical limitations including low throughput, lack of reproducibility, insufficient maturity of organoids, and the formation of the necrotic core due to limited diffusion of nutrients and oxygen. To address these issues and establish predictive DNT models, cerebral organoids were differentiated in a dynamic condition in a unique pillar/perfusion plate, which were exposed to test compounds to evaluate DNT potential. The pillar/perfusion plate facilitated uniform, dynamic culture of cerebral organoids with improved proliferation and maturity by rapid, bidirectional flow generated on a digital rocker. Day 9 cerebral organoids in the pillar/perfusion plate were exposed to ascorbic acid (DNT negative) and methylmercury (DNT positive) in a dynamic condition for 1 and 3 weeks, and changes in organoid morphology and neural gene expression were measured to determine DNT potential. As expected, ascorbic acid did not induce any changes in organoid morphology and neural gene expression. However, exposure of day 9 cerebral organoids to methylmercury resulted in significant changes in organoid morphology and neural gene expression. Interestingly, methylmercury did not induce adverse changes in cerebral organoids in a static condition, thus highlighting the importance of dynamic organoid culture in DNT assessment.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"17 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad80cf
Cecilia Palma, Bianca Aterini, Erika Ferrari, Marta Mangione, Martina Romeo, Luigi Nezi, Silvia Lopa, Teresa Manzo, Paola Occhetta, Marco Rasponi
{"title":"A compartmentalized microfluidic platform to investigate immune cells cross-talk in rheumatoid arthritis.","authors":"Cecilia Palma, Bianca Aterini, Erika Ferrari, Marta Mangione, Martina Romeo, Luigi Nezi, Silvia Lopa, Teresa Manzo, Paola Occhetta, Marco Rasponi","doi":"10.1088/1758-5090/ad80cf","DOIUrl":"10.1088/1758-5090/ad80cf","url":null,"abstract":"<p><p>The dysregulation of the immune system plays a crucial role in the pathogenesis of manyfold diseases, among which we find rheumatoid arthritis (RA), an autoimmune disease characterized by chronic inflammation in synovial joints, leading to pain and disability. Immune cells such as pro-inflammatory macrophages and T helper 1 (Th1) cells drive the inflammatory cascade. Thus, including immune system in<i>in vitro</i>models is pivotal to recapitulate and better understand the complex interactions between these immune cell subsets and their secreted mediators. Here, a compartmentalized microfluidic platform is presented, for precise confinement of circulating immune cells in organs-on-chip. The integration of innovative normally-closed sieving valves allows, through minimal waste of biological material, to co-culture different immune cell types (e.g. macrophages and Th1). Moreover, the platform allows to stimulate cell subsets separately, and to assess their cross-talk at desired time points. Functional validation of the platform demonstrates its ability to create stable chemotactic gradients, allowing for induction and evaluation of Th1 cells migration. In a proof-of-concept study, the platform allowed to assess Th1 T cells migration towards pro-inflammatory macrophages, thus replicating a characteristic interaction among immune cells triggered during RA onset. These results thus support the suitability of the platform to study immune cells cross-talk and migration phenomena, being potentially applicable to a manyfold immune cell mechanisms, both involved in RA progression and in different immune-mediated pathologies.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad86ec
Ashis Kumar Bera, Mohd Suhail Rizvi, Vijayasankar Kn, Falguni Pati
{"title":"Engineering anisotropic tissue analogues: harnessing synergistic potential of extrusion-based bioprinting and extracellular matrix-based bioink.","authors":"Ashis Kumar Bera, Mohd Suhail Rizvi, Vijayasankar Kn, Falguni Pati","doi":"10.1088/1758-5090/ad86ec","DOIUrl":"10.1088/1758-5090/ad86ec","url":null,"abstract":"<p><p>In the realm of tissue engineering, replicating the intricate alignment of cells and the extracellular matrix (ECM) found in native tissue has long been a challenge. Most recent studies have relied on complex multi-step processes to approximate native tissue alignment. To address this challenge, we introduce a novel, single-step method for constructing highly aligned fibrous structures within multi-modular three-dimensional conglomerates. Our approach harnesses the synergistic potential of extrusion-based bioprinting and the fibrillogenesis kinetics of collagen-rich decellularized ECM. We have identified three key parameters governing ECM microfiber alignment during extrusion-based bioprinting: applied shear stress, stretching or extensional force, and post-print deformation. By carefully manipulating these parameters, we have successfully created highly aligned fibrous structures within multi-modular three-dimensional conglomerates. Our technique offers an efficient solution and has been validated by computational modeling. Comprehensive analyses confirm the efficacy across various scenarios, including encapsulated, top-seeded, and migratory cells. Notably, we have demonstrated the versatility and effectiveness of our approach by bioprinting highly aligned cardiac tissue patches, which show further maturation evidenced by the expression of Troponin-T and Myo-D differentiation factor needed for contractility and myotube formation, respectively. In summary, our streamlined approach offers a robust solution for creating anisotropic tissue analogues with precise ECM organization.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad8266
Martine Tarsitano, Clara Liu Chung Ming, Lucia Bennar, Hadi Mahmodi, Kaitlin Wyllie, Dana Idais, Wafa Al Shamery, Donatella Paolino, Thomas R Cox, Irina Kabakova, Peter Ralph, Carmine Gentile
{"title":"<i>Chlorella</i>-enriched hydrogels protect against myocardial damage and reactive oxygen species production in an<i>in vitro</i>ischemia/reperfusion model using cardiac spheroids.","authors":"Martine Tarsitano, Clara Liu Chung Ming, Lucia Bennar, Hadi Mahmodi, Kaitlin Wyllie, Dana Idais, Wafa Al Shamery, Donatella Paolino, Thomas R Cox, Irina Kabakova, Peter Ralph, Carmine Gentile","doi":"10.1088/1758-5090/ad8266","DOIUrl":"10.1088/1758-5090/ad8266","url":null,"abstract":"<p><p>Microalgae have emerged as promising photosynthetic microorganisms for biofabricating advanced tissue constructs, with improved oxygenation and reduced reactive oxygen species (ROS) production. However, their use in the engineering of human tissues has been limited due to their intrinsic growth requirements, which are not compatible with human cells. In this study, we first formulated alginate-gelatin (AlgGel) hydrogels with increasing densities of<i>Chlorella vulgaris</i>. Then, we characterised their mechanical properties and pore size. Finally, we evaluated their effects on cardiac spheroid (CS) pathophysiological response under control and ischemia/reperfusion (I/R) conditions. Our results showed that the addition of<i>Chlorella</i>did not affect AlgGel mechanical properties, while the mean pore size significantly decreased by 35% in the presence of the 10<sup>7</sup>cells ml<sup>-1</sup>microalgae density. Under normoxic conditions, the addition of 10<sup>7</sup><i>Chlorella</i>cells ml<sup>-1</sup>significantly reduced CS viability starting from 14 d in. No changes in pore size nor CS viability were measured for hydrogels containing 10<sup>5</sup>and 10<sup>6</sup><i>Chlorella</i>cells ml<sup>-1</sup>. In our I/R model, all<i>Chlorella</i>-enriched hydrogels reduced cardiac cell sensitivity to hypoxic conditions with a corresponding reduction in ROS production, as well as protected against I/R-induced reduction in cell viability. Altogether, our results support a promising use of<i>Chlorella</i>-enriched Alg-Gel hydrogels for cardiovascular tissue engineering.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad8034
Wonbin Park, Jae-Seong Lee, Min-Ju Choi, Won-Woo Cho, Seok-Hyeon Lee, Dongjun Lee, Jae Ho Kim, Sik Yoon, Sae-Ock Oh, Minjun Ahn, Dong-Woo Cho, Byoung Soo Kim
{"title":"3D engineering of diseased blood vessels for integrative<i>in vitro</i>-in silico mechanobiology study.","authors":"Wonbin Park, Jae-Seong Lee, Min-Ju Choi, Won-Woo Cho, Seok-Hyeon Lee, Dongjun Lee, Jae Ho Kim, Sik Yoon, Sae-Ock Oh, Minjun Ahn, Dong-Woo Cho, Byoung Soo Kim","doi":"10.1088/1758-5090/ad8034","DOIUrl":"10.1088/1758-5090/ad8034","url":null,"abstract":"<p><p>Vascular diseases are complex conditions orchestrated by multiple factors, including cellular components, biochemical stimuli, and mechanical forces. Despite the advancement of numerous therapeutic approaches, the global mortality associated with the diseases continues to escalate owing to a lack of understanding of the underlying pathologies. Tissue engineering and computational strategies have been recently developed to investigate diseased blood vessels from multifactorial perspective, enabling more accurate prediction of disease progression and opening new avenues for preclinical advances. This review focuses on<i>in vitro</i>and in silico blood vessel models to elucidate the pathomechanisms of vascular diseases. Following a discussion of biofabrication and computational modeling strategies, the recent research that utilizes the models of various blood vessel diseases, such as atherosclerosis, aneurysms, varicose veins, and thrombosis, are introduced. Finally, current breakthroughs, existing challenges, and outlooks in the field are described.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-10-24DOI: 10.1088/1758-5090/ad82e0
Kylie G Nairon, Akanksha Nigam, Tilak Khanal, Marco A Rodriguez, Neel Rajan, Sydney R Anderson, Matthew D Ringel, Aleksander Skardal
{"title":"RCAN1.4 regulates tumor cell engraftment and invasion in a thyroid cancer to lung metastasis-on-a-chip microphysiological system.","authors":"Kylie G Nairon, Akanksha Nigam, Tilak Khanal, Marco A Rodriguez, Neel Rajan, Sydney R Anderson, Matthew D Ringel, Aleksander Skardal","doi":"10.1088/1758-5090/ad82e0","DOIUrl":"10.1088/1758-5090/ad82e0","url":null,"abstract":"<p><p>Progressive metastasis is the primary cause of cancer-related deaths. It has been recognized that many cancers are characterized by long periods of stability followed by subsequent progression. Genes termed metastasis progression suppressors (MPS) are functional gatekeepers of this process, and their loss leads to late-stage progression. Previously, we identified regulator of calcineurin 1, isoform 4 (RCAN1.4) as a functional MPS for several cancers, including thyroid cancer, a tumor type prone to metastatic dormancy. RCAN1.4 knockdown increases expression of the cancer-promoting transcription factor NFE2-like bZIP transcription factor (NFE2L3), and through this mechanism increases cancer cell proliferation and invasion in<i>in vitro</i>and<i>in vivo</i>and promotes metastatic potential to lungs in tail vein models. However, the mechanisms by which RCAN 1.4 regulates specific metastatic steps is incompletely characterized. Studies of the metastatic cascade are limited in mouse systems due to high cost and long duration. Here, we have shown the creation of a thyroid-to-lung metastasis-on-a-chip (MOC) model to address these limitations, allowing invasion analysis and quantification on a single cell level. We then deployed the platform to investigate RCAN1.4 knockdown in fluorescently tagged hTh74 and FTC236 thyroid cancer cell lines. Cells were circulated through microfluidic channels, running parallel to lung hydrogel constructs allowing tumor cell-lung tissue interactions. Similar to studies in mouse models, RCAN1.4 knockdown increased NFE2L3 expression, globally increased invasion distance into lung constructs and had cell line and clonally dependent variations on bulk metastatic burden. In line with previous<i>in vivo</i>observations, RCAN1.4 knockdown had a greater impact on hTh74 metastatic propensity than FTC236. In summary, we have developed and validated a novel MOC system evaluate and quantify RCAN1.4-regulated thyroid cancer cell lung adherence and invasion. This system creates opportunities for more detailed and rapid mechanistic studies the metastatic cascade and creates opportunities for translational assay development.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofabricationPub Date : 2024-09-18DOI: 10.1088/1758-5090/ad76d9
Karl T Wagner, Rick X Z Lu, Shira Landau, Sarah A Shawky, Yimu Zhao, David F Bodenstein, Luis Felipe Jiménez Vargas, Richard Jiang, Sargol Okhovatian, Ying Wang, Chuan Liu, Daniel Vosoughi, Dakota Gustafson, Jason E Fish, Carolyn L Cummins, Milica Radisic
{"title":"Endothelial extracellular vesicles enhance vascular self-assembly in engineered human cardiac tissues.","authors":"Karl T Wagner, Rick X Z Lu, Shira Landau, Sarah A Shawky, Yimu Zhao, David F Bodenstein, Luis Felipe Jiménez Vargas, Richard Jiang, Sargol Okhovatian, Ying Wang, Chuan Liu, Daniel Vosoughi, Dakota Gustafson, Jason E Fish, Carolyn L Cummins, Milica Radisic","doi":"10.1088/1758-5090/ad76d9","DOIUrl":"10.1088/1758-5090/ad76d9","url":null,"abstract":"<p><p>The fabrication of complex and stable vasculature in engineered cardiac tissues represents a significant hurdle towards building physiologically relevant models of the heart. Here, we implemented a 3D model of cardiac vasculogenesis, incorporating endothelial cells (EC), stromal cells, and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) in a fibrin hydrogel. The presence of CMs disrupted vessel formation in 3D tissues, resulting in the upregulation of endothelial activation markers and altered extracellular vesicle (EV) signaling in engineered tissues as determined by the proteomic analysis of culture supernatant. miRNA sequencing of CM- and EC-secreted EVs highlighted key EV-miRNAs that were postulated to play differing roles in cardiac vasculogenesis, including the let-7 family and miR-126-3p in EC-EVs. In the absence of CMs, the supplementation of CM-EVs to EC monolayers attenuated EC migration and proliferation and resulted in shorter and more discontinuous self-assembling vessels when applied to 3D vascular tissues. In contrast, supplementation of EC-EVs to the tissue culture media of 3D vascularized cardiac tissues mitigated some of the deleterious effects of CMs on vascular self-assembly, enhancing the average length and continuity of vessel tubes that formed in the presence of CMs. Direct transfection validated the effects of the key EC-EV miRNAs let-7b-5p and miR-126-3p in improving the maintenance of continuous vascular networks. EC-EV supplementation to biofabricated cardiac tissues and microfluidic devices resulted in tissue vascularization, illustrating the use of this approach in the engineering of enhanced, perfusable, microfluidic models of the myocardium.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11409464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}