Biofabrication最新文献

筛选
英文 中文
Bioinks for engineering gradient-based osteochondral and meniscal tissue substitutes: a review.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-31 DOI: 10.1088/1758-5090/adb0f4
Mahdieh Heydarigoojani, Maryam Farokhi, Sara Simorgh
{"title":"Bioinks for engineering gradient-based osteochondral and meniscal tissue substitutes: a review.","authors":"Mahdieh Heydarigoojani, Maryam Farokhi, Sara Simorgh","doi":"10.1088/1758-5090/adb0f4","DOIUrl":"https://doi.org/10.1088/1758-5090/adb0f4","url":null,"abstract":"<p><p>Gradient tissues are anisotropic structure with gradual transition in structural and biological properties. The gradient in structural, mechanical and biochemical properties of osteochondral and meniscal tissues play a major role in defining tissue functions. Designing tissue substitutes that replicate these gradient properties is crucial to facilitate regeneration of tissue functions following injuries. Advanced manufacturing technologies such as 3D bioprinting hold great potentials for recreating gradient nature of tissues through using zone-specific bioinks and layer-by-layer deposition of spatially defined biomaterials, cell types and bioactive cues. This review highlighted the gradients in osteochondral and meniscal tissues in detail, elaborated on individual components of the bioink, and reviewed recent advancements in 3D gradient-based osteochondral and meniscal tissue substitutes. Finally, key challenges of the field and future perspectives for developing gradient-based tissue substitutes were discussed. The insights from these advances can broaden the possibilities for engineering gradient tissues.&#xD.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microchannel fabrication on bio-grade Nitinol SMA byμ-ED milling process using sustainable oil for improving the machining performance and biocompatibility. 采用μ-ED铣削工艺制备生物级镍钛诺SMA微通道,提高加工性能和生物相容性。
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-30 DOI: 10.1088/1758-5090/adaaa2
Satish Chaurasia, Kishore Debnath
{"title":"Microchannel fabrication on bio-grade Nitinol SMA by<i>μ</i>-ED milling process using sustainable oil for improving the machining performance and biocompatibility.","authors":"Satish Chaurasia, Kishore Debnath","doi":"10.1088/1758-5090/adaaa2","DOIUrl":"10.1088/1758-5090/adaaa2","url":null,"abstract":"<p><p>The process of micromachining has garnered attention for its ability to create three-dimensional tiny features, particularly in ultra-hard and exotic materials. The present work investigates the effect of different parameters of the<i>μ</i>-ED milling, such as pulse on time (<i>T</i><sub>on</sub>), pulse off time (<i>T</i><sub>off</sub>), voltage (<i>V</i>), and tool rotation (TR) on the dimensional deviation (DD), material removal rate (MRR), surface roughness (Ra), and machined surface characteristics (analyzed by EDS and FESEM). The sesame oil as dielectric and tungsten-copper as tool electrodes were used to maintain the accuracy and improve the machinability of bio-grade Nitinol shape memory alloy (SMA). Response surface methodology (RSM) and genetic algorithms (GAs) were used to optimize the various input parameters of the<i>μ</i>-ED milling process. Artificial neural network was combined with GA to find the best parametric combination for microchannel fabrication. The cytotoxicity test was also performed on the machined surface to analyze the biocompatibility of the machined surface. It was found that the cell viability of Nitinol SMA was improved by 85.11% after machining at the optimum condition. The highest MRR was found to be 0.076 gm min<sup>-1</sup>, and the lowest DD and Ra were found to be 16.47<i>μ</i>m and Ra 0.387<i>μ</i>m, respectively.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing. 电纺丝坚固,可生物降解,生物活性和纳米结构的缝合线,以加速慢性伤口愈合。
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-30 DOI: 10.1088/1758-5090/adacaf
Yiran Li, Hongxing Xu, Wenwen Zhao, Li Zhang, Shaohua Wu
{"title":"Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing.","authors":"Yiran Li, Hongxing Xu, Wenwen Zhao, Li Zhang, Shaohua Wu","doi":"10.1088/1758-5090/adacaf","DOIUrl":"10.1088/1758-5090/adacaf","url":null,"abstract":"<p><p>The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure. The addition of SRHC was found to have no significant influences on the fiber morphology, diameter, and the crystallinity of as-prepared PLLA sutures. Importantly, all the SRHC-contained PLLA nanofiber sutures possessed excellent tensile and knot strength, which were of significant importance for the surgical suture applications. Besides, the antioxidant and anti-inflammatory properties of these sutures obviously enhanced with the increasing of SRHC concentration. Furthermore, the<i>in vitro</i>cell tests illustrated that the high fiber orientation of the sutures was able to efficiently induce the human dermal fibroblasts (HDFs) to migrate in a rapid manner, and the sutures loaded with high content of SRHC could significantly promote the attachment and proliferation of HDFs in comparison. The<i>in vivo</i>diabetic mouse model experiments revealed that all the as-developed PLLA sutures could effectively close the wound, but the PLLA sutures containing high content of SRHC could dramatically promote the wound healing with high quality by shortening the healing time, improving the collagen deposition, neovascularization, and the regeneration of hair follicles, especially compared with commercial polyester (PET) suture. This study offers a simple and easily-handling strategy to develop robust, biodegradable, bioactive, and nanostructured PLLA sutures, which shows huge potential for the treatment of hard-to-heal diabetic wounds.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent trends in embedded 3D bioprinting of vascularized tissue constructs.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-29 DOI: 10.1088/1758-5090/adafdd
Won-Woo Cho, Wonbin Park, Dong-Woo Cho
{"title":"Recent trends in embedded 3D bioprinting of vascularized tissue constructs.","authors":"Won-Woo Cho, Wonbin Park, Dong-Woo Cho","doi":"10.1088/1758-5090/adafdd","DOIUrl":"https://doi.org/10.1088/1758-5090/adafdd","url":null,"abstract":"<p><p>3D bioprinting technology offers significant advantages in the fabrication of tissue and organ structures by allowing precise layer-by-layer patterning of cells and various biomaterials. However, conventional bioinks exhibit poor mechanical properties, which limit their use in the fabrication of large-scale vascularized tissue constructs. To address these limitations, recent studies have focused on the development of rapidly crosslinkable bioinks through chemical modification. These enable rapid crosslinking within minutes, offering substantial advantages for engineering large-scale tissue constructs. Nevertheless, challenges remain in the production of constructs that fully incorporate the complex vascular networks inherent to native tissues. Recently, embedded bioprinting technique, which involves the direct writing of bioink into a support bath that provides physical support, has gained significant attention for enabling the freeform fabrication of 3D structures. This method has been extensively studied and offers the advantage of fabricating structures ranging from tissue constructs with simple vascular channels to complex structures containing multiscale vascular networks. This review presents an overview of the various materials utilized in embedded bioprinting and elucidates the rheological properties of these materials. Furthermore, it examines the current research trends in the biofabrication of vascularized tissue constructs using embedded bioprinting techniques, along with their associated limitations. The review concludes by proposing areas for future improvement, specifically addressing material and biofabrication approaches as well as bioprinting systems.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collagen silver-doped hydroxyapatite scaffolds reinforced with 3D printed frameworks for infection prevention and enhanced repair of load-bearing bone defects.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-28 DOI: 10.1088/1758-5090/adaf59
Katelyn J Genoud, Joanna M Sadowska, Rachael N Power, Lara S Costard, Emily J Ryan, Austyn R Matheson, Arlyng González-Vázquez, Mark Lemoine, Kian Eichholz, Pierluca Pitacco, Gang Chen, Brenton Cavanagh, Orquidea Garcia, Ciara M Murphy, Caroline M Curtin, Daniel J Kelly, Fergal J O'Brien
{"title":"Collagen silver-doped hydroxyapatite scaffolds reinforced with 3D printed frameworks for infection prevention and enhanced repair of load-bearing bone defects.","authors":"Katelyn J Genoud, Joanna M Sadowska, Rachael N Power, Lara S Costard, Emily J Ryan, Austyn R Matheson, Arlyng González-Vázquez, Mark Lemoine, Kian Eichholz, Pierluca Pitacco, Gang Chen, Brenton Cavanagh, Orquidea Garcia, Ciara M Murphy, Caroline M Curtin, Daniel J Kelly, Fergal J O'Brien","doi":"10.1088/1758-5090/adaf59","DOIUrl":"https://doi.org/10.1088/1758-5090/adaf59","url":null,"abstract":"<p><p>Osteomyelitis, a severe bone infection, is an extremely challenging complication in the repair of traumatic bone defects. Furthermore, the use of long-term high-dose antibiotics in standard treatment increases the risks of antibiotic resistance. Herein, an antibiotic-free, collagen silver-doped hydroxyapatite (coll-AgHA) scaffold reinforced with a 3D printed polycaprolactone (PCL) framework was developed with enhanced mechanical properties to be used in the repair of load-bearing defects with antimicrobial properties as a preventative measure against osteomyelitis. The AgHA particles were fabricated in varying Ag doses and loaded within freeze-dried collagen scaffolds at two concentrations. The optimised Ag dose (1.5 mol% Ag) and AgHA concentration (200 wt%) within the collagen scaffold demonstrated in vitro osteogenic and antibacterial properties against Staphylococcus aureus (S. aureus), the main causative pathogen of osteomyelitis. The addition of the PCL framework to the coll-AgHA scaffolds significantly enhanced the compressive modulus from 4 kPa to 12 MPa while maintaining high porosity as well as both pro-osteogenic and antibacterial properties. The reinforced coll-AgHA scaffolds were implanted in vivo and demonstrated enhanced bone repair, significantly greater vessel formation, and calcified tissue in a load-bearing critical sized defect in rats. Taken together, these results confirm the capacity of this novel biomaterial scaffold as a preventative measure against infection in bone repair for use in load-bearing defects, without the use of antibiotics.&#xD.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situquality monitoring during embedded bioprinting using integrated microscopy and classical computer vision. 嵌入式生物打印过程中使用集成显微镜和经典计算机视觉的现场质量监测。
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-28 DOI: 10.1088/1758-5090/adaa22
Vasileios Sergis, Daniel Kelly, Ankita Pramanick, Graham Britchfield, Karl Mason, Andrew C Daly
{"title":"<i>In-situ</i>quality monitoring during embedded bioprinting using integrated microscopy and classical computer vision.","authors":"Vasileios Sergis, Daniel Kelly, Ankita Pramanick, Graham Britchfield, Karl Mason, Andrew C Daly","doi":"10.1088/1758-5090/adaa22","DOIUrl":"10.1088/1758-5090/adaa22","url":null,"abstract":"<p><p>Despite significant advances in bioprinting technology, current hardware platforms lack the capability for process monitoring and quality control. This limitation hampers the translation of the technology into industrial GMP-compliant manufacturing settings. As a key step towards a solution, we developed a novel bioprinting platform integrating a high-resolution camera for<i>in-situ</i>monitoring of extrusion outcomes during embedded bioprinting. Leveraging classical computer vision and image analysis techniques, we then created a custom software module for assessing print quality. This module enables quantitative comparison of printer outputs to input points of the computer-aided design model's 2D projections, measuring area and positional accuracy. To showcase the platform's capabilities, we then investigated compatibility with various bioinks, dyes, and support bath materials for both 2D and 3D print path trajectories. In addition, we performed a detailed study on how the rheological properties of granular support hydrogels impact print quality during embedded bioprinting, illustrating a practical application of the platform. Our results demonstrated that lower viscosity, faster thixotropy recovery, and smaller particle sizes significantly enhance print fidelity. This novel bioprinting platform, equipped with integrated process monitoring, holds great potential for establishing auditable and more reproducible biofabrication processes for industrial applications.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of 3D-printed scaffolds for breast tissue engineering using structural analysis.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-28 DOI: 10.1088/1758-5090/adaf5a
Sharon Leigh Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben-Horin, Dana Egozi, Shulamit Levenberg
{"title":"Rational design of 3D-printed scaffolds for breast tissue engineering using structural analysis.","authors":"Sharon Leigh Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben-Horin, Dana Egozi, Shulamit Levenberg","doi":"10.1088/1758-5090/adaf5a","DOIUrl":"https://doi.org/10.1088/1758-5090/adaf5a","url":null,"abstract":"<p><p>Best cosmetic outcomes of breast reconstruction using tissue engineering techniques rely on the scaffold architecture and material, which are currently both to be determined. This study suggests an approach for a rational design of breast-shaped scaffold architecture, in which structural analysis is implemented to predict its stiffness and adjust it to that of the native tissue. This approach can help achieve the goal of optimal scaffold architecture for breast tissue engineering. &#xD;Based on specifications defined in a preliminary implantation study of a non-rationally designed scaffold, and using analytical modeling and finite element analysis (FEA), we rationally designed a polycaprolactone (PCL) made, 3D-printed, highly porous, breast-shaped scaffold with a stiffness similar to the breast adipose tissue. This scaffold had an architecture of a double-shelled dome connected by pillars, with no bottom to allow direct contact of its fat graft with the host's blood vessels (Shelled Hemisphere Adaptive Design (SHAD)). To demonstrate the potential of the SHAD scaffold in breast tissue engineering, a proof-of-concept study was performed, in which SHAD scaffolds were embedded with human adipose derived mesenchymal stem cells (hAdMSCs), isolated from lipoaspirates, and implanted in Nod-Scid-Gamma (NSG) mouse model with a delayed fat graft injection. After 4 weeks of implantation, the SHAD implants were vascularized with a viable fat graft, indicating the suitability of the SHAD scaffold for breast tissue engineering. &#xD;&#xD.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-28 DOI: 10.1088/1758-5090/ada63b
Jannika T Korkeamäki, Ahmad Rashad, Miina Ojansivu, Jennika Karvinen, Janne T Koivisto, Kristin Syverud, Minna Kellomäki, Susanna Miettinen, Kamal Mustafa
{"title":"Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering.","authors":"Jannika T Korkeamäki, Ahmad Rashad, Miina Ojansivu, Jennika Karvinen, Janne T Koivisto, Kristin Syverud, Minna Kellomäki, Susanna Miettinen, Kamal Mustafa","doi":"10.1088/1758-5090/ada63b","DOIUrl":"https://doi.org/10.1088/1758-5090/ada63b","url":null,"abstract":"<p><p>A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking.<u>The first generation of bioinks</u>was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability. Adding CNFs to Alg-Gel solution increased viscosity and printability without compromising cell viability. In<u>the second generation of bioinks</u>, the influence of nano-hydroxyapatite (nHA) on the performance of the optimized Alg-Gel-CNF formulation was investigated. The addition of nHA increased the viscosity and improved printability, and an adjustment in alginate concentration improved the stability of the structures in long-term culture. The third generation bioink incorporated RGD-functionalized alginate to support cell attachment and osteogenic differentiation. The optimized bioink composition exhibited improved printability, structural integrity in long-term culture and high hBMSC viability. In addition, the final bioink composition, RGD-Alg-Gel-CNF-nHA, showed osteogenic potential: production of the osteogenic marker proteins (Runx2, OCN), enzyme (ALP), and gene expression (<i>Runx2</i>,<i>OCN</i>). A further aim of the study was to evaluate the osteogenic functionality of cells released from the structures after bioprinting. Cells were printed in two bioinks with different viscosities and incubated at 37 °C in growth medium without additional CaCl<sub>2</sub>. This caused gelatin to dissolve, releasing the cells to attach to tissue culture plates. The results demonstrated differences in hBMSC osteogenic differentiation. Moreover, the osteogenic differentiation of the released cells was different from that of the embedded cells cultured in 3D. Thus, this systematic investigation into bioink development shows improved results through the generations and sheds light on the biological effects of the bioprinting process.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"17 2","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergizing bioprinting and 3D cell culture to enhance tissue formation in printed synthetic constructs.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-24 DOI: 10.1088/1758-5090/adae37
Daniel Günther, Cédric Bergerbit, Ary Marsee, Sitara Vedaraman, Alba Pueyo-Moliner, Céline Bastard, Guy Eelen, Jose Luis Gerardo Nava, Mieke Dewerchin, Peter Carmeliet, Rafael Kramann, Kerstin Schneeberger, Bart Spee, Laura De Laporte
{"title":"Synergizing bioprinting and 3D cell culture to enhance tissue formation in printed synthetic constructs.","authors":"Daniel Günther, Cédric Bergerbit, Ary Marsee, Sitara Vedaraman, Alba Pueyo-Moliner, Céline Bastard, Guy Eelen, Jose Luis Gerardo Nava, Mieke Dewerchin, Peter Carmeliet, Rafael Kramann, Kerstin Schneeberger, Bart Spee, Laura De Laporte","doi":"10.1088/1758-5090/adae37","DOIUrl":"https://doi.org/10.1088/1758-5090/adae37","url":null,"abstract":"<p><p>Bioprinting is currently the most promising method to biofabricate complex tissues in vitro with the potential to transform the future of organ transplantation and drug discovery. Efforts to create such tissues are, however, almost exclusively based on animal-derived materials, like gelatin methacryloyl, which have demonstrated efficacy in bioprinting of complex tissues. While these materials are already used in clinical applications, uncertainty about their safety still remains due to their animal origin. Alternatively, synthetic bioinks are developed that match the printability of natural bioinks but lack their biological complexity, and thereby often fail to support cell growth and facilitate tissue formation. Additionally, most synthetic materials do not meet the mechanical demands to bioprint stable constructs while providing a suitable environment for cells to grow, limiting the number of available bioinks. To bridge this gap and synergize bioprinting and 3D cell culture, we developed a PEG-based bioink system to promote the growth and spreading of cell spheroids that consist of human primary endothelial cells and fibroblasts. The 3D bioprinted centimeter-scale constructs have a high shape fidelity and accelerated softening to provide sufficient space for cells to grow. Adjusting the rate of degradability, induced by the integration of ester-functionalized crosslinkers in addition to protease cleavable crosslinkers into the hydrogel network, improves the growth of spheroids in larger printed hydrogel constructs containing an interconnected channel structure. The perfusable constructs enable extensive spheroid sprouting and the formation of a cellular network upon fusion of sprouts as initial steps towards tissue formation with the potential for clinical translation.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in biomaterials-based tissue engineering for regeneration of female reproductive tissues.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-24 DOI: 10.1088/1758-5090/adae38
Yong Ho Kim, Hyung-Sik Kim, In-Sun Hong
{"title":"Advances in biomaterials-based tissue engineering for regeneration of female reproductive tissues.","authors":"Yong Ho Kim, Hyung-Sik Kim, In-Sun Hong","doi":"10.1088/1758-5090/adae38","DOIUrl":"https://doi.org/10.1088/1758-5090/adae38","url":null,"abstract":"<p><p>The anatomical components of the female reproductive system-comprising the ovaries, uterus, cervix, vagina, and fallopian tubes-interact intricately to provide the structural and hormonal support essential for reproduction. However, this system is susceptible to various detrimental factors, both congenital and acquired, that can impair fertility and adversely affect quality of life. Recent advances in bioengineering have led to the development of sophisticated three-dimensional (3D) models that mimic the complex architecture and functionality of reproductive organs. These models, incorporating diverse cell types and tissue layers, are crucial for understanding physiological processes within the reproductive tract. They offer insights into decidualization, ovulation, folliculogenesis, and the progression of reproductive cancers, thereby enhancing personalized medical treatments and addressing female infertility. This review highlights the pivotal role of tissue engineering in diagnosing and treating female infertility, emphasizing the importance of considering factors like biocompatibility, biomaterial selection, and mechanical properties in the design of bioengineered systems. The challenge of replicating the functionally specialized and structurally complex organs, such as the uterus and ovary, underscores the need for reliable techniques that improve morphological and functional restoration. Despite substantial progress, the goal of creating a fully artificial female reproductive system is still a challenge. Nonetheless, the recent fabrication of artificial ovaries, uteruses, cervixes, and vaginas marks significant advancements toward this aim. Looking forward, the challenges in bioengineering are expected to spur further innovations in both basic and applied sciences, potentially hastening the clinical adoption of these technologies.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信