Biofabrication最新文献

筛选
英文 中文
Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing. 电纺丝坚固,可生物降解,生物活性和纳米结构的缝合线,以加速慢性伤口愈合。
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-30 DOI: 10.1088/1758-5090/adacaf
Yiran Li, Hongxing Xu, Wenwen Zhao, Li Zhang, Shaohua Wu
{"title":"Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing.","authors":"Yiran Li, Hongxing Xu, Wenwen Zhao, Li Zhang, Shaohua Wu","doi":"10.1088/1758-5090/adacaf","DOIUrl":"10.1088/1758-5090/adacaf","url":null,"abstract":"<p><p>The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure. The addition of SRHC was found to have no significant influences on the fiber morphology, diameter, and the crystallinity of as-prepared PLLA sutures. Importantly, all the SRHC-contained PLLA nanofiber sutures possessed excellent tensile and knot strength, which were of significant importance for the surgical suture applications. Besides, the antioxidant and anti-inflammatory properties of these sutures obviously enhanced with the increasing of SRHC concentration. Furthermore, the<i>in vitro</i>cell tests illustrated that the high fiber orientation of the sutures was able to efficiently induce the human dermal fibroblasts (HDFs) to migrate in a rapid manner, and the sutures loaded with high content of SRHC could significantly promote the attachment and proliferation of HDFs in comparison. The<i>in vivo</i>diabetic mouse model experiments revealed that all the as-developed PLLA sutures could effectively close the wound, but the PLLA sutures containing high content of SRHC could dramatically promote the wound healing with high quality by shortening the healing time, improving the collagen deposition, neovascularization, and the regeneration of hair follicles, especially compared with commercial polyester (PET) suture. This study offers a simple and easily-handling strategy to develop robust, biodegradable, bioactive, and nanostructured PLLA sutures, which shows huge potential for the treatment of hard-to-heal diabetic wounds.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent trends in embedded 3D bioprinting of vascularized tissue constructs.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-29 DOI: 10.1088/1758-5090/adafdd
Won-Woo Cho, Wonbin Park, Dong-Woo Cho
{"title":"Recent trends in embedded 3D bioprinting of vascularized tissue constructs.","authors":"Won-Woo Cho, Wonbin Park, Dong-Woo Cho","doi":"10.1088/1758-5090/adafdd","DOIUrl":"https://doi.org/10.1088/1758-5090/adafdd","url":null,"abstract":"<p><p>3D bioprinting technology offers significant advantages in the fabrication of tissue and organ structures by allowing precise layer-by-layer patterning of cells and various biomaterials. However, conventional bioinks exhibit poor mechanical properties, which limit their use in the fabrication of large-scale vascularized tissue constructs. To address these limitations, recent studies have focused on the development of rapidly crosslinkable bioinks through chemical modification. These enable rapid crosslinking within minutes, offering substantial advantages for engineering large-scale tissue constructs. Nevertheless, challenges remain in the production of constructs that fully incorporate the complex vascular networks inherent to native tissues. Recently, embedded bioprinting technique, which involves the direct writing of bioink into a support bath that provides physical support, has gained significant attention for enabling the freeform fabrication of 3D structures. This method has been extensively studied and offers the advantage of fabricating structures ranging from tissue constructs with simple vascular channels to complex structures containing multiscale vascular networks. This review presents an overview of the various materials utilized in embedded bioprinting and elucidates the rheological properties of these materials. Furthermore, it examines the current research trends in the biofabrication of vascularized tissue constructs using embedded bioprinting techniques, along with their associated limitations. The review concludes by proposing areas for future improvement, specifically addressing material and biofabrication approaches as well as bioprinting systems.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situquality monitoring during embedded bioprinting using integrated microscopy and classical computer vision. 嵌入式生物打印过程中使用集成显微镜和经典计算机视觉的现场质量监测。
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-28 DOI: 10.1088/1758-5090/adaa22
Vasileios Sergis, Daniel Kelly, Ankita Pramanick, Graham Britchfield, Karl Mason, Andrew C Daly
{"title":"<i>In-situ</i>quality monitoring during embedded bioprinting using integrated microscopy and classical computer vision.","authors":"Vasileios Sergis, Daniel Kelly, Ankita Pramanick, Graham Britchfield, Karl Mason, Andrew C Daly","doi":"10.1088/1758-5090/adaa22","DOIUrl":"10.1088/1758-5090/adaa22","url":null,"abstract":"<p><p>Despite significant advances in bioprinting technology, current hardware platforms lack the capability for process monitoring and quality control. This limitation hampers the translation of the technology into industrial GMP-compliant manufacturing settings. As a key step towards a solution, we developed a novel bioprinting platform integrating a high-resolution camera for<i>in-situ</i>monitoring of extrusion outcomes during embedded bioprinting. Leveraging classical computer vision and image analysis techniques, we then created a custom software module for assessing print quality. This module enables quantitative comparison of printer outputs to input points of the computer-aided design model's 2D projections, measuring area and positional accuracy. To showcase the platform's capabilities, we then investigated compatibility with various bioinks, dyes, and support bath materials for both 2D and 3D print path trajectories. In addition, we performed a detailed study on how the rheological properties of granular support hydrogels impact print quality during embedded bioprinting, illustrating a practical application of the platform. Our results demonstrated that lower viscosity, faster thixotropy recovery, and smaller particle sizes significantly enhance print fidelity. This novel bioprinting platform, equipped with integrated process monitoring, holds great potential for establishing auditable and more reproducible biofabrication processes for industrial applications.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of 3D-printed scaffolds for breast tissue engineering using structural analysis.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-28 DOI: 10.1088/1758-5090/adaf5a
Sharon Leigh Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben-Horin, Dana Egozi, Shulamit Levenberg
{"title":"Rational design of 3D-printed scaffolds for breast tissue engineering using structural analysis.","authors":"Sharon Leigh Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben-Horin, Dana Egozi, Shulamit Levenberg","doi":"10.1088/1758-5090/adaf5a","DOIUrl":"https://doi.org/10.1088/1758-5090/adaf5a","url":null,"abstract":"<p><p>Best cosmetic outcomes of breast reconstruction using tissue engineering techniques rely on the scaffold architecture and material, which are currently both to be determined. This study suggests an approach for a rational design of breast-shaped scaffold architecture, in which structural analysis is implemented to predict its stiffness and adjust it to that of the native tissue. This approach can help achieve the goal of optimal scaffold architecture for breast tissue engineering. &#xD;Based on specifications defined in a preliminary implantation study of a non-rationally designed scaffold, and using analytical modeling and finite element analysis (FEA), we rationally designed a polycaprolactone (PCL) made, 3D-printed, highly porous, breast-shaped scaffold with a stiffness similar to the breast adipose tissue. This scaffold had an architecture of a double-shelled dome connected by pillars, with no bottom to allow direct contact of its fat graft with the host's blood vessels (Shelled Hemisphere Adaptive Design (SHAD)). To demonstrate the potential of the SHAD scaffold in breast tissue engineering, a proof-of-concept study was performed, in which SHAD scaffolds were embedded with human adipose derived mesenchymal stem cells (hAdMSCs), isolated from lipoaspirates, and implanted in Nod-Scid-Gamma (NSG) mouse model with a delayed fat graft injection. After 4 weeks of implantation, the SHAD implants were vascularized with a viable fat graft, indicating the suitability of the SHAD scaffold for breast tissue engineering. &#xD;&#xD.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-28 DOI: 10.1088/1758-5090/ada63b
Jannika T Korkeamäki, Ahmad Rashad, Miina Ojansivu, Jennika Karvinen, Janne T Koivisto, Kristin Syverud, Minna Kellomäki, Susanna Miettinen, Kamal Mustafa
{"title":"Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering.","authors":"Jannika T Korkeamäki, Ahmad Rashad, Miina Ojansivu, Jennika Karvinen, Janne T Koivisto, Kristin Syverud, Minna Kellomäki, Susanna Miettinen, Kamal Mustafa","doi":"10.1088/1758-5090/ada63b","DOIUrl":"https://doi.org/10.1088/1758-5090/ada63b","url":null,"abstract":"<p><p>A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking.<u>The first generation of bioinks</u>was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability. Adding CNFs to Alg-Gel solution increased viscosity and printability without compromising cell viability. In<u>the second generation of bioinks</u>, the influence of nano-hydroxyapatite (nHA) on the performance of the optimized Alg-Gel-CNF formulation was investigated. The addition of nHA increased the viscosity and improved printability, and an adjustment in alginate concentration improved the stability of the structures in long-term culture. The third generation bioink incorporated RGD-functionalized alginate to support cell attachment and osteogenic differentiation. The optimized bioink composition exhibited improved printability, structural integrity in long-term culture and high hBMSC viability. In addition, the final bioink composition, RGD-Alg-Gel-CNF-nHA, showed osteogenic potential: production of the osteogenic marker proteins (Runx2, OCN), enzyme (ALP), and gene expression (<i>Runx2</i>,<i>OCN</i>). A further aim of the study was to evaluate the osteogenic functionality of cells released from the structures after bioprinting. Cells were printed in two bioinks with different viscosities and incubated at 37 °C in growth medium without additional CaCl<sub>2</sub>. This caused gelatin to dissolve, releasing the cells to attach to tissue culture plates. The results demonstrated differences in hBMSC osteogenic differentiation. Moreover, the osteogenic differentiation of the released cells was different from that of the embedded cells cultured in 3D. Thus, this systematic investigation into bioink development shows improved results through the generations and sheds light on the biological effects of the bioprinting process.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"17 2","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergizing bioprinting and 3D cell culture to enhance tissue formation in printed synthetic constructs.
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-24 DOI: 10.1088/1758-5090/adae37
Daniel Günther, Cédric Bergerbit, Ary Marsee, Sitara Vedaraman, Alba Pueyo-Moliner, Céline Bastard, Guy Eelen, Jose Luis Gerardo Nava, Mieke Dewerchin, Peter Carmeliet, Rafael Kramann, Kerstin Schneeberger, Bart Spee, Laura De Laporte
{"title":"Synergizing bioprinting and 3D cell culture to enhance tissue formation in printed synthetic constructs.","authors":"Daniel Günther, Cédric Bergerbit, Ary Marsee, Sitara Vedaraman, Alba Pueyo-Moliner, Céline Bastard, Guy Eelen, Jose Luis Gerardo Nava, Mieke Dewerchin, Peter Carmeliet, Rafael Kramann, Kerstin Schneeberger, Bart Spee, Laura De Laporte","doi":"10.1088/1758-5090/adae37","DOIUrl":"https://doi.org/10.1088/1758-5090/adae37","url":null,"abstract":"<p><p>Bioprinting is currently the most promising method to biofabricate complex tissues in vitro with the potential to transform the future of organ transplantation and drug discovery. Efforts to create such tissues are, however, almost exclusively based on animal-derived materials, like gelatin methacryloyl, which have demonstrated efficacy in bioprinting of complex tissues. While these materials are already used in clinical applications, uncertainty about their safety still remains due to their animal origin. Alternatively, synthetic bioinks are developed that match the printability of natural bioinks but lack their biological complexity, and thereby often fail to support cell growth and facilitate tissue formation. Additionally, most synthetic materials do not meet the mechanical demands to bioprint stable constructs while providing a suitable environment for cells to grow, limiting the number of available bioinks. To bridge this gap and synergize bioprinting and 3D cell culture, we developed a PEG-based bioink system to promote the growth and spreading of cell spheroids that consist of human primary endothelial cells and fibroblasts. The 3D bioprinted centimeter-scale constructs have a high shape fidelity and accelerated softening to provide sufficient space for cells to grow. Adjusting the rate of degradability, induced by the integration of ester-functionalized crosslinkers in addition to protease cleavable crosslinkers into the hydrogel network, improves the growth of spheroids in larger printed hydrogel constructs containing an interconnected channel structure. The perfusable constructs enable extensive spheroid sprouting and the formation of a cellular network upon fusion of sprouts as initial steps towards tissue formation with the potential for clinical translation.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pneumatic conveying inkjet bioprinting for the processing of living cells. 用于加工活细胞的气力输送喷墨生物打印。
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-24 DOI: 10.1088/1758-5090/ada8e2
Justyna Bożek, Olga Kurchakova, Johanna Michel, Isabel Groß, Lena Gerhards, Yanzhen Zhang, Izabella Brand, Anja U Bräuer
{"title":"Pneumatic conveying inkjet bioprinting for the processing of living cells.","authors":"Justyna Bożek, Olga Kurchakova, Johanna Michel, Isabel Groß, Lena Gerhards, Yanzhen Zhang, Izabella Brand, Anja U Bräuer","doi":"10.1088/1758-5090/ada8e2","DOIUrl":"10.1088/1758-5090/ada8e2","url":null,"abstract":"<p><p>Inkjet printing techniques are often used for bioprinting purposes because of their excellent printing characteristics, such as high cell viability and low apoptotic rate, contactless<i>modus operandi</i>, commercial availability, and low cost. However, they face some disadvantages, such as the use of bioinks of low viscosity, cell damage due to shear stress caused by drop ejection and jetting velocity, as well as a narrow range of available bioinks that still challenge the inkjet printing technology. New technological solutions are required to overcome these obstacles. Pneumatic conveying printing, a new type of inkjet-based printing technique, was applied for the bioprinting of both acellular and cellular fibrin-hydrogel droplets. Drops of a bioink containing 6 × 10<sup>6</sup>HEK293H cells ml<sup>-1</sup>were supplied from a sterile nozzle connected to a syringe pump and deposited on a gas stream on a fibrinogen-coated glass slide, here referred to as biopaper. Fibrinogen film is the substrate of the polymerization reaction with thrombin and Ca<sup>2+</sup>present in the bioink. The pneumatic conveying printing technique operates on a mechanism by which drop ejection and deposition in a stream of gas occurs. The percentage of unprinted and printed dead HEK293H cells was 5 ± 2% and 7 ± 4%, respectively. Thus, compared to normal handling, pneumatic conveying printing causes only little damage to the cells. The velocity of the drop approaching the biopaper surface is below 0.2 m s<sup>-1</sup>and does not cause any damage to the cells. The cell viability of printed cells was 93%, being an excellent value for inkjet printing technology. The HEK293H cells exhibited approximately a 24 h lag time of proliferation that was preceded by intense migration and aggregation. Control experiments proved that the cell migration and lag time were associated with the chemical nature of the fibrin hydrogel and not with cell stress.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volumetric bioprinting of the osteoid niche. 骨样生态位的体积生物打印。
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-24 DOI: 10.1088/1758-5090/adab25
Jessie Duquesne, Laurens Parmentier, Edward Vermeersch, Flora Lemaire, Jung Won Seo, Ruslan I Dmitriev, Sandra Van Vlierberghe
{"title":"Volumetric bioprinting of the osteoid niche.","authors":"Jessie Duquesne, Laurens Parmentier, Edward Vermeersch, Flora Lemaire, Jung Won Seo, Ruslan I Dmitriev, Sandra Van Vlierberghe","doi":"10.1088/1758-5090/adab25","DOIUrl":"10.1088/1758-5090/adab25","url":null,"abstract":"<p><p>Volumetric bioprinting has revolutionized the field of biofabrication by enabling the creation of cubic centimeter-scale living constructs at faster printing times (in the order of seconds). However, a key challenge remains: developing a wider variety of available osteogenic bioinks that allow osteogenic maturation of the encapsulated cells within the construct. Herein, the bioink exploiting a step-growth mechanism (norbornene-norbornene functionalized gelatin in combination with thiolated gelatin-GelNBNBSH) outperformed the bioink exploiting a chain-growth mechanism (gelatin methacryloyl-GelMA), as the necessary photo-initiator concentration was three times lower combined with a more than 50% reduction in required light exposure dose resulting in an improved positive and negative resolution. To mimic the substrate elasticity of the osteoid, two concentrations of the photo-initiator Li-TPO-L (1 and 10 mg ml<sup>-1</sup>) were compared for post-curing whereby the lowest concentration was selected since it resulted in attaining the osteogenic substrate elasticity combined with excellent biocompatibility with HT1080 cells (>95%). Further physico-chemical testing revealed that the volumetric printing (VP) process affected the degradation time of the constructs with volumetric constructs degrading slower than the control sheets which could be due to the introduced fibrillar structure inherent to the VP process. Moreover, GelNBNBSH volumetric constructs significantly outperformed the GelMA volumetric constructs in terms of a 2-fold increase in photo-crosslinkable moiety conversion and a 3-fold increase in bulk stiffness of the construct. Finally, a 21-day osteogenic cell study was performed with highly viable dental pulp-derived stem cells (>95%) encapsulated within the volumetric printed constructs. Osteogenesis was greatly favored for the GelNBNBSH constructs through enhanced early (alkaline phosphatase activity) and late maturation (calcium production) osteogenic markers. After 21 d, a secretome analysis revealed a more mature osteogenic phenotype within GelNBNBSH constructs as compared to their chain-growth counterpart in terms of osteogenic, immunological and angiogenic signaling.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ameliorating macrophage pyroptosis via ANXA1/NLRP3/Caspase-1/GSDMD pathway: Ac2-26/OGP-loaded intelligent hydrogel enhances bone healing in diabetic periodontitis. 通过ANXA1/NLRP3/Caspase-1/GSDMD途径改善巨噬细胞焦亡:Ac2-26/ ogp负载智能水凝胶促进糖尿病牙周炎骨愈合
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-23 DOI: 10.1088/1758-5090/ada737
Ruoyu Li, Wenfeng Li, Yungshan Teng, Runze Li, Siyi Kong, Xin Chen, Haotian Luo, Danying Chen, Yuqing Guo, Yangqiao Qing, Hio Cheng Leong, Bingyan Guo, Meihan Chen, Zixin Pan, Shushuo Zheng, Yihong Deng, Yang Cao, Chen Zhou, Xuenong Zou, Weicai Wang
{"title":"Ameliorating macrophage pyroptosis via ANXA1/NLRP3/Caspase-1/GSDMD pathway: Ac2-26/OGP-loaded intelligent hydrogel enhances bone healing in diabetic periodontitis.","authors":"Ruoyu Li, Wenfeng Li, Yungshan Teng, Runze Li, Siyi Kong, Xin Chen, Haotian Luo, Danying Chen, Yuqing Guo, Yangqiao Qing, Hio Cheng Leong, Bingyan Guo, Meihan Chen, Zixin Pan, Shushuo Zheng, Yihong Deng, Yang Cao, Chen Zhou, Xuenong Zou, Weicai Wang","doi":"10.1088/1758-5090/ada737","DOIUrl":"10.1088/1758-5090/ada737","url":null,"abstract":"<p><p>Craniofacial bone defect healing in periodontitis patients with diabetes background has long been difficult due to increased blood glucose levels which cause overproduction of reactive oxygen species (ROS) and a low pH environment. These conditions negatively affect the function of macrophages, worsen inflammation and oxidative stress, and ultimately, hinder osteoblasts' bone repair potential. In this study, we for the first time found that annexin A1 (ANXA1) expression in macrophages was reduced in a diabetic periodontitis (DP) environment, with the activation of the NLRP3/Caspase-1/GSDMD signaling pathway, and, eventually, increased macrophage pyroptosis. Next, we have developed a new GPPG intelligent hydrogel system which was ROS and pH responsive, and loaded with Ac2-26, an ANXA1 bioactive peptide, and osteogenic peptide OGP as well. We found that Ac2-26/OGP/GPPG can effectively reduce ROS, mitigates macrophage pyroptosis via the ANXA1/NLRP3/Caspase-1/GSDMD pathway and enhanced osteogenic differentiation. The effect of Ac2-26/OGP/GPPG in regulation of pyroptosis and bone defect repair was also further validated by animal experiments on periodontitis-induced tooth loss model in diabetic rats. To conclude, our study unveils the effect of ANXA1 on macrophage pyroptosis in periodontitis patients with diabetes, based on which we introduced a promising innovative hydrogel system for improvement of bone defects repair in DP patients via targeting macrophage pyroptosis and enhancing osteogenic potential.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo vessel connection of pre-vascularised 3D-bioprinted gingival connective tissue substitutes. 预血管化3d生物打印牙龈结缔组织替代物的体内血管连接。
IF 8.2 2区 医学
Biofabrication Pub Date : 2025-01-21 DOI: 10.1088/1758-5090/adac90
Rawen Smirani, Chantal Medina, Julie Becker, Camille Dechelette, Benoit Rousseau, Jean-Christophe Fricain, Adrien Naveau
{"title":"In vivo vessel connection of pre-vascularised 3D-bioprinted gingival connective tissue substitutes.","authors":"Rawen Smirani, Chantal Medina, Julie Becker, Camille Dechelette, Benoit Rousseau, Jean-Christophe Fricain, Adrien Naveau","doi":"10.1088/1758-5090/adac90","DOIUrl":"https://doi.org/10.1088/1758-5090/adac90","url":null,"abstract":"<p><p>Producing oral soft tissues using tissue engineering could compensate for the disadvantages of autologous grafts (limited availability and increased patient morbidity) and currently available substitutes (shrinkage). However, there is a lack of in vitro-engineered oral tissues due to the difficulty of obtaining stable pre-vessels that connect to the host and enable graft success. The main objective was to assess the connection of pre-vascularised 3D-bioprinted gingival substitutes to the host vasculature when subcutaneously implanted in immunodeficient mice. This study produced vascularised connective tissue substitutes using extrusion-based 3D-bioprinting of primary human gingival fibroblasts (hGF) and fluorescent human endothelial cells (RFP-HUVEC) cocultures. Pre-vascularised (hGF+RFP-HUVEC -CC grids) and control (hGF only -HG grids) grids were bioprinted and pre-cultivated for 14 days to enable pre-vessels formation. In vitro vessel formation follow-up was performed. Eight-week-old female NOG mice were used for in vivo experiments. One grid per mouse was subcutaneously implanted in 20 mice (10HG/10CC). The fluorescent activity of RFP-HUVEC was monitored. Samples were retrieved at 7, 14 and 21 days. Histological, immunohistochemical, and immunofluorescent staining was performed. CC-grids formed efficient and stable pre-vessel networks within 14 days of static pre-culture. HG-grids did not contain any vessel, while CC-grids successfully connected to the host vasculature by presenting erythrocytes within the vessel lumen inside the grids starting day 7. From days 7 to 21, vessel density was stable. Human pre-vessels were present at 7 days and were progressively replaced by murine endothelial cells. This study showed that primary hGF-HUVEC co-cultures can be successfully 3D-bioprinted within biomimetic hydrogels having a close composition to the gingival connective tissue, and HUVEC organise themselves into pre-vessel networks that connect to the murine vasculature when implanted in vivo. This approach represents a promising strategy to enhance current and future oral soft tissue substitutes for prospective clinical applications.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信