利用微流体和脱细胞细胞外基质制备肿瘤微球,用于高通量类器官药物筛选。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jinlong Jin, Wei Chen, Jing Li, Jiahuan Yang, Rui Dai, Junjie Tang, Meiqi Li, You Chen, Changhua Zhang, Jie Liu
{"title":"利用微流体和脱细胞细胞外基质制备肿瘤微球,用于高通量类器官药物筛选。","authors":"Jinlong Jin, Wei Chen, Jing Li, Jiahuan Yang, Rui Dai, Junjie Tang, Meiqi Li, You Chen, Changhua Zhang, Jie Liu","doi":"10.1088/1758-5090/adf099","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer is a prominent global malignancy that highlights the pressing need for reliable preclinical models to expedite therapeutic efficacy and drug discovery. Traditional models, such as cell lines and patient-derived xenografts, are constrained by their inability to fully replicate tumor heterogeneity and support scalable drug screening. While patient-derived organoids more accurately preserve tumor pathophysiology, their clinical translation is impeded by technical challenges related to standardization, reproducibility, and high-throughput compatibility. In this study, we developed a microfluidic-engineered platform that employed a laminin-enhanced decellularized small intestinal submucosa extracellular matrix (dSISML) to produce uniform organoid-laden microspheres (MP). This biohybrid system eliminated the need for tumor-derived matrices (e.g. Matrigel) and provided a physiologically relevant microenvironment. When integrated with microfluidics, the platform facilitated rapid and scalable production of size-tunable MP, thereby effectively addressing critical bottlenecks in organoid handling and drug testing workflows. Our study demonstrated that dSISML could sustain organoid growth and drug responsiveness comparable to Matrigel, while offering improved operational simplicity and reduced batch variability. Moreover, dSISML enabled simpler and controllable high-throughput microsphere preparation. This advanced methodology not only delivers precision equivalent to conventional cell culture techniques but also empowers large-scale pharmacological evaluation through its automated media processing system. By integrating biomimetic design with scalable fabrication, this strategy advances personalized oncology through robust<i>in vitro</i>models for high-throughput therapeutic screening and mechanistic studies.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered tumor microspheres via microfluidics and decellularized extracellular matrix for high-throughput organoid-based drug screening.\",\"authors\":\"Jinlong Jin, Wei Chen, Jing Li, Jiahuan Yang, Rui Dai, Junjie Tang, Meiqi Li, You Chen, Changhua Zhang, Jie Liu\",\"doi\":\"10.1088/1758-5090/adf099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer is a prominent global malignancy that highlights the pressing need for reliable preclinical models to expedite therapeutic efficacy and drug discovery. Traditional models, such as cell lines and patient-derived xenografts, are constrained by their inability to fully replicate tumor heterogeneity and support scalable drug screening. While patient-derived organoids more accurately preserve tumor pathophysiology, their clinical translation is impeded by technical challenges related to standardization, reproducibility, and high-throughput compatibility. In this study, we developed a microfluidic-engineered platform that employed a laminin-enhanced decellularized small intestinal submucosa extracellular matrix (dSISML) to produce uniform organoid-laden microspheres (MP). This biohybrid system eliminated the need for tumor-derived matrices (e.g. Matrigel) and provided a physiologically relevant microenvironment. When integrated with microfluidics, the platform facilitated rapid and scalable production of size-tunable MP, thereby effectively addressing critical bottlenecks in organoid handling and drug testing workflows. Our study demonstrated that dSISML could sustain organoid growth and drug responsiveness comparable to Matrigel, while offering improved operational simplicity and reduced batch variability. Moreover, dSISML enabled simpler and controllable high-throughput microsphere preparation. This advanced methodology not only delivers precision equivalent to conventional cell culture techniques but also empowers large-scale pharmacological evaluation through its automated media processing system. By integrating biomimetic design with scalable fabrication, this strategy advances personalized oncology through robust<i>in vitro</i>models for high-throughput therapeutic screening and mechanistic studies.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/adf099\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adf099","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)是一种突出的全球性恶性肿瘤,迫切需要可靠的临床前模型来加快治疗效果和药物发现。传统的模型,如细胞系和患者来源的异种移植物(PDX),由于无法完全复制肿瘤异质性和支持可扩展的药物筛选而受到限制。虽然患者源性类器官(PDOs)更准确地保存了肿瘤病理生理,但它们的临床转化受到标准化、可重复性和高通量兼容性等技术挑战的阻碍。在这项研究中,我们开发了一种微流体工程平台,该平台采用层粘胶蛋白增强的脱细胞小肠粘膜下层细胞外基质(dSISML)来生产均匀的类器官负载微球。这种生物混合系统消除了对肿瘤衍生基质(例如Matrigel)的需求,并提供了生理相关的微环境。当与微流体集成时,该平台促进了尺寸可调微球的快速和可扩展生产,从而有效地解决了类器官处理和药物测试工作流程中的关键瓶颈。我们的研究表明,dSISML可以维持与Matrigel相当的类器官生长和药物反应性,同时提供改进的操作简单性和减少批次差异。此外,dSISML使高通量微球制备更简单、可控。这种先进的方法不仅提供了与传统细胞培养技术相当的精度,而且通过其自动介质处理系统可以进行大规模的药理评估。通过将仿生设计与可扩展制造相结合,该策略通过强大的高通量治疗筛选和机制研究的体外模型推进个性化肿瘤学。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineered tumor microspheres via microfluidics and decellularized extracellular matrix for high-throughput organoid-based drug screening.

Colorectal cancer is a prominent global malignancy that highlights the pressing need for reliable preclinical models to expedite therapeutic efficacy and drug discovery. Traditional models, such as cell lines and patient-derived xenografts, are constrained by their inability to fully replicate tumor heterogeneity and support scalable drug screening. While patient-derived organoids more accurately preserve tumor pathophysiology, their clinical translation is impeded by technical challenges related to standardization, reproducibility, and high-throughput compatibility. In this study, we developed a microfluidic-engineered platform that employed a laminin-enhanced decellularized small intestinal submucosa extracellular matrix (dSISML) to produce uniform organoid-laden microspheres (MP). This biohybrid system eliminated the need for tumor-derived matrices (e.g. Matrigel) and provided a physiologically relevant microenvironment. When integrated with microfluidics, the platform facilitated rapid and scalable production of size-tunable MP, thereby effectively addressing critical bottlenecks in organoid handling and drug testing workflows. Our study demonstrated that dSISML could sustain organoid growth and drug responsiveness comparable to Matrigel, while offering improved operational simplicity and reduced batch variability. Moreover, dSISML enabled simpler and controllable high-throughput microsphere preparation. This advanced methodology not only delivers precision equivalent to conventional cell culture techniques but also empowers large-scale pharmacological evaluation through its automated media processing system. By integrating biomimetic design with scalable fabrication, this strategy advances personalized oncology through robustin vitromodels for high-throughput therapeutic screening and mechanistic studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信