Biotechnology advances最新文献

筛选
英文 中文
Chiral helical scaffolds: Unlocking their potential in biomolecular interactions and biomedical applications.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2025-01-03 DOI: 10.1016/j.biotechadv.2024.108513
Ghada Bouz, Jaroslav Žádný, Jan Storch, Jan Vacek
{"title":"Chiral helical scaffolds: Unlocking their potential in biomolecular interactions and biomedical applications.","authors":"Ghada Bouz, Jaroslav Žádný, Jan Storch, Jan Vacek","doi":"10.1016/j.biotechadv.2024.108513","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108513","url":null,"abstract":"<p><p>In nature, various molecules possess spiral geometry. Such helical structures are even prevalent within the human body, represented classically by DNA and three-dimensional (secondary structure) protein folding. In this review, we chose helicenes and helicene-like structures -synthetically accessible carbon-rich molecules- as a compelling example of helically chiral scaffolds. Helicene chemistry, traditionally anchored in materials science, has been a subject of increasing interest in the biomedical field due to the unique optical and chiral properties of these helical structures. This review explores the diverse applications of helicenes in biomedicine, focusing on their role in cell imaging, protective coatings for implants, drug delivery systems, biosensors, and drug discovery. We discuss the unique properties of helicenes and helicene-like structures, highlighting their ability to form complex interactions with various biomolecules and their potential in the development of candidates for therapeutic agents. Recent advances in helicene derivatives with enhanced circularly polarized luminescence and other photochemical properties are also reviewed, underlining their utility in precise bio-imaging and diagnostic techniques. This review consolidates the current literature and emphasizes the growing importance of helicenes in bridging chemistry, materials science, and biology for innovative technological and biomedical applications.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108513"},"PeriodicalIF":12.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2025-01-02 DOI: 10.1016/j.biotechadv.2024.108514
Ziyu Li, Yujie Wang, Xiaojing Zhao, Qing Meng, Guozhen Ma, Lijie Xie, Xiaolong Jiang, Yutao Liu, Di Huang
{"title":"Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions.","authors":"Ziyu Li, Yujie Wang, Xiaojing Zhao, Qing Meng, Guozhen Ma, Lijie Xie, Xiaolong Jiang, Yutao Liu, Di Huang","doi":"10.1016/j.biotechadv.2024.108514","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108514","url":null,"abstract":"<p><p>Protein glycosylation, which involves the addition of carbohydrate chains to amino acid side chains, imparts essential properties to proteins, offering immense potential in synthetic biology applications. Despite its importance, natural glycosylation pathways present several limitations, highlighting the need for new tools to better understand glycan structures, recognition, metabolism, and biosynthesis, and to facilitate the production of biologically relevant glycoproteins. The field of bacterial glycoengineering has gained significant attention due to the ongoing discovery and study of bacterial glycosylation systems. By utilizing protein glycan coupling technology, a wide range of valuable glycoproteins for clinical and diagnostic purposes have been successfully engineered. This review outlines the recent advances in bacterial protein glycosylation from the perspective of synthetic biology and metabolic engineering, focusing on the development of new glycoprotein therapeutics and vaccines. We provide an overview of the production of high-value, customized glycoproteins using prokaryotic glycosylation platforms, with particular emphasis on four key elements: (i) glycosyltransferases, (ii) carrier proteins, (iii) glycosyl donors, and (iv) host bacteria. Optimization of these elements enables precise control over glycosylation patterns, thus enhancing the potential of the resulting products. Finally, we discuss the challenges and future prospects of leveraging synthetic biology technologies to develop microbial glyco-factories and cell-free systems for efficient glycoprotein production.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108514"},"PeriodicalIF":12.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2024-12-30 DOI: 10.1016/j.biotechadv.2024.108512
Dongna Li, Fei Wang, Xuening Zheng, Yingying Zheng, Xiaosen Pan, Jianing Li, Xiaojun Ma, Fen Yin, Qiang Wang
{"title":"Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives.","authors":"Dongna Li, Fei Wang, Xuening Zheng, Yingying Zheng, Xiaosen Pan, Jianing Li, Xiaojun Ma, Fen Yin, Qiang Wang","doi":"10.1016/j.biotechadv.2024.108512","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108512","url":null,"abstract":"<p><p>The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of \"competition for food\". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy. LB predominantly comprises cellulose, hemicellulose, and lignin, which can be converted into high-quality substrates for PHA production by various means. Future efforts should focus on maximizing the value derived from LB. This review highlights the momentous and valuable research breakthroughs in recent years, showcasing the biosynthesis of PHA using low-cost LB as a potential feedstock. The metabolic mechanism and pathways of PHA synthesis by microbes, as well as the key enzymes involved, are summarized, offering insights into improving microbial production capacity and fermentation metabolic engineering. Life cycle assessment and techno-economic analysis for sustainable and economical PHA production are introduced. Technological hurdles such as LB pretreatment, and performance limitations are highlighted for their impact on enhancing the sustainable production and application of PHA. Meanwhile, the development direction of co-substrate fermentation of LB and with other carbon sources, integrated processes development, and co-production strategies were also proposed to reduce the cost of PHA and effectively valorize wastes.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108512"},"PeriodicalIF":12.1,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biohydrogen fermentation from pretreated biomass in lignocellulose biorefinery: Effects of inhibitory byproducts and recent progress in mitigation strategies.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2024-12-29 DOI: 10.1016/j.biotechadv.2024.108508
Zi-Tong Zhao, Shan-Shan Yang, Geng Luo, Han-Jun Sun, Bing-Feng Liu, Guang-Li Cao, Mei-Yi Bao, Ji-Wei Pang, Nan-Qi Ren, Jie Ding
{"title":"Biohydrogen fermentation from pretreated biomass in lignocellulose biorefinery: Effects of inhibitory byproducts and recent progress in mitigation strategies.","authors":"Zi-Tong Zhao, Shan-Shan Yang, Geng Luo, Han-Jun Sun, Bing-Feng Liu, Guang-Li Cao, Mei-Yi Bao, Ji-Wei Pang, Nan-Qi Ren, Jie Ding","doi":"10.1016/j.biotechadv.2024.108508","DOIUrl":"10.1016/j.biotechadv.2024.108508","url":null,"abstract":"<p><p>Lignocellulosic biomass (LCB) is expected to play a critical role in achieving the goal of biomass-to-bioenergy conversion because of its wide distribution and low price. Biomass fermentation is a promising method for the sustainable generation of biohydrogen (bioH<sub>2</sub>) from the renewable feedstock. Due to the inherent resistant structure of biomass, LCB needs to be pretreated to improve its digestibility and utilization. However, certain intermediates by-products generated during the pretreatment process, such as phenolic compounds, furan derivatives, and aldehydes, have been identified as potent inhibitors of subsequent anaerobic fermentation due to their disruptive effects on the physiological and metabolic functions of hydrogen-producing microbiota. To counteract the negative effects of these inhibitors on bio-H<sub>2</sub> fermentation, various detoxification strategies for LCB hydrolysates have been explored. This review presents a comprehensive analysis of fermentation-inhibitory by-products commonly generated by modern pretreatment protocols and their negative impacts on biohydrogen fermentation. Furthermore, the underlying mechanisms of inhibition upon hydrogen-producing microbes and their impacts on microbial community dynamics are exhibited. State-of-the-art strategies for detoxifying pretreated LCB have been also discussed, along with alternative pretreatment strategies designed to minimize or eliminate the formation of inhibitory by-products. Additionally, this review addresses the significant gap in the economic viability assessments of these processes, offering a detailed evaluation of both the technological and economic feasibility of biomass fermentation. Given the limitations of previous studies, strategies for cost-effective pretreatment and detoxification should be developed in the future to overcome the inhibition of fermentation inhibitors in the bioconversion of biomass to hydrogen.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108508"},"PeriodicalIF":12.1,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carboxysomes: The next frontier in biotechnology and sustainable solutions.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2024-12-26 DOI: 10.1016/j.biotechadv.2024.108511
Sulamita Santos Correa, Júnia Schultz, Brandon Zahodnik-Huntington, Andreas Naschberger, Alexandre Soares Rosado
{"title":"Carboxysomes: The next frontier in biotechnology and sustainable solutions.","authors":"Sulamita Santos Correa, Júnia Schultz, Brandon Zahodnik-Huntington, Andreas Naschberger, Alexandre Soares Rosado","doi":"10.1016/j.biotechadv.2024.108511","DOIUrl":"10.1016/j.biotechadv.2024.108511","url":null,"abstract":"<p><p>Some bacteria possess microcompartments that function as protein-based organelles. Bacterial microcompartments (BMCs) sequester enzymes to optimize metabolic reactions. Several BMCs have been characterized to date, including carboxysomes and metabolosomes. Genomic analysis has identified novel BMCs and their loci, often including genes for signature enzymes critical to their function, but further characterization is needed to confirm their roles. Among the various BMCs, carboxysomes, which are found in cyanobacteria and some chemoautotrophic bacteria, and are most extensively investigated. These self-assembling polyhedral proteinaceous BMCs are essential for carbon fixation. Carboxysomes encapsulate the enzymes RuBisCo and carbonic anhydrase, which increase the carbon fixation rate in the cell and decrease the oxygenation rate by RuBisCo. The ability of carboxysomes to concentrate carbon dioxide in crops and industrially relevant microorganisms renders them attractive targets for carbon assimilation bioengineering. Thus, carboxysome characterization is the first step toward developing carboxysome-based applications. Therefore, this review comprehensively explores carboxysome morphology, physiology, and biochemistry. It also discusses recent advances in microscopy and complementary techniques for isolating and characterizing this versatile class of prokaryotic organelles.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108511"},"PeriodicalIF":12.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2024-12-26 DOI: 10.1016/j.biotechadv.2024.108509
Jian Han, Faqiha Hamza, Jianming Guo, Mahmoud Sayed, Sang-Hyun Pyo, Yong Xu
{"title":"Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products.","authors":"Jian Han, Faqiha Hamza, Jianming Guo, Mahmoud Sayed, Sang-Hyun Pyo, Yong Xu","doi":"10.1016/j.biotechadv.2024.108509","DOIUrl":"10.1016/j.biotechadv.2024.108509","url":null,"abstract":"<p><p>The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.88 billion USD in 2022), furfural (662 million USD in 2023), and bioethanol (46.18 billion USD in 2022), are introduced along with the current market status and latest production technologies. Then, the discussion covers the industrial development and production methods of xylo-oligosaccharides, and highlights the potential of xylonic acid, focusing on innovative whole-cell catalysis in a sealed oxygen supply-bioreactor system. Finally, other directions for efficient and high-value utilization of lignocellulosic xylose are summarized, including lactic acid, succinic acid, and 2,3-butanediol. This review aims to provide new perspectives on the utilization and valorization of xylose by summarizing main traditional industrial products and emerging products, thereby promoting the development of the entire lignocellulosic biomass field.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108509"},"PeriodicalIF":12.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2024-12-26 DOI: 10.1016/j.biotechadv.2024.108510
Deok-Kun Oh, Tae-Eui Lee, Jin Lee, Kyung-Chul Shin, Jin-Byung Park
{"title":"Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids.","authors":"Deok-Kun Oh, Tae-Eui Lee, Jin Lee, Kyung-Chul Shin, Jin-Byung Park","doi":"10.1016/j.biotechadv.2024.108510","DOIUrl":"10.1016/j.biotechadv.2024.108510","url":null,"abstract":"<p><p>The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts. For increased oxyfunctionalization of unsaturated fatty acids, enzyme engineering, functional and balanced expression in recombinant cells, selection of suitable catalyst types, and reaction engineering have been suggested. This review describes biocatalysts involved in the oxyfunctionalization of unsaturated fatty acids and the production of hydroxy fatty acids and oxygenated chemicals.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108510"},"PeriodicalIF":12.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2024-12-19 DOI: 10.1016/j.biotechadv.2024.108506
Sai Guna Ranjan Gurazada, Hannah M Kennedy, Richard D Braatz, Steven J Mehrman, Shawn W Polson, Irene T Rombel
{"title":"HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing.","authors":"Sai Guna Ranjan Gurazada, Hannah M Kennedy, Richard D Braatz, Steven J Mehrman, Shawn W Polson, Irene T Rombel","doi":"10.1016/j.biotechadv.2024.108506","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108506","url":null,"abstract":"<p><p>Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-Omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of \"HEK-Omics\" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108506"},"PeriodicalIF":12.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz scanning near-field optical microscopy for biomedical detection: Recent advances, challenges, and future perspectives.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2024-12-19 DOI: 10.1016/j.biotechadv.2024.108507
Shihan Yan, Guanyin Cheng, Zhongbo Yang, Yuansen Guo, Ligang Chen, Ying Fu, Fucheng Qiu, Jonathan J Wilksch, Tianwu Wang, Yiwen Sun, Junchao Fan, Xunbin Wei, Jiaguang Han, Fei Sun, Shixiang Xu, Huabin Wang
{"title":"Terahertz scanning near-field optical microscopy for biomedical detection: Recent advances, challenges, and future perspectives.","authors":"Shihan Yan, Guanyin Cheng, Zhongbo Yang, Yuansen Guo, Ligang Chen, Ying Fu, Fucheng Qiu, Jonathan J Wilksch, Tianwu Wang, Yiwen Sun, Junchao Fan, Xunbin Wei, Jiaguang Han, Fei Sun, Shixiang Xu, Huabin Wang","doi":"10.1016/j.biotechadv.2024.108507","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108507","url":null,"abstract":"<p><p>Terahertz (THz) radiation is widely recognized as a non-destructive, label-free, and highly- sensitive tool for biomedical detections. Nevertheless, its application in precision biomedical fields faces challenges due to poor spatial resolution caused by intrinsically long wavelength characteristics. THz scanning near-field optical microscopy (THz-SNOM), which surpasses the Rayleigh criterion, offers micrometer and nanometer-scale spatial resolution, making it possible to perform precise bioinspection with THz imaging. THz-SNOM is attracting considerable attention for its potential in advanced biomedical research and diagnosis. Currently, its family typically includes four members based on distinct principles, which are suitable for different biological applications. This review provides an overview of the principles of these THz-SNOM modalities, outlines their various applications, identifies the obstacles hindering their performance, and envisions their future development.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108507"},"PeriodicalIF":12.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of the proteosurfaceome and exoproteome in bacterial coaggregation.
IF 12.1 1区 工程技术
Biotechnology advances Pub Date : 2024-12-16 DOI: 10.1016/j.biotechadv.2024.108505
Ana C Afonso, Maria J Saavedra, Manuel Simões, Lúcia C Simões
{"title":"The role of the proteosurfaceome and exoproteome in bacterial coaggregation.","authors":"Ana C Afonso, Maria J Saavedra, Manuel Simões, Lúcia C Simões","doi":"10.1016/j.biotechadv.2024.108505","DOIUrl":"10.1016/j.biotechadv.2024.108505","url":null,"abstract":"<p><p>Bacterial coaggregation is a critical process in multispecies biofilm formation, driven by specific molecular interactions that facilitate the adhesion and aggregation of bacterial cells. These interactions are essential for the development and persistence of complex microbial communities. This review provides a comprehensive analysis of the roles of the proteosurfaceome and exoproteome in bacterial coaggregation. The proteosurfaceome, comprising surface-bound molecules such as adhesins, drives species-specific interactions crucial for partner recognition and adhesion. In parallel, the exoproteome, particularly extracellular polymeric substances (EPS), enhances aggregate stability by reinforcing structural integrity and facilitating intercellular communication, although its direct role in coaggregation remains to be fully clarified. By integrating these perspectives, this review aims to elucidate how the proteosurfaceome and exoproteome influence bacterial coaggregation, offering insights into their combined impact on microbial community structure and function. Furthermore, we highlight existing knowledge gaps and propose directions for future research.</p>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":" ","pages":"108505"},"PeriodicalIF":12.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信