Biometrics最新文献

筛选
英文 中文
Case-crossover designs and overdispersion with application to air pollution epidemiology. 病例交叉设计和过度分散在空气污染流行病学中的应用。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae117
Samuel Perreault, Gracia Y Dong, Alex Stringer, Hwashin Shin, Patrick E Brown
{"title":"Case-crossover designs and overdispersion with application to air pollution epidemiology.","authors":"Samuel Perreault, Gracia Y Dong, Alex Stringer, Hwashin Shin, Patrick E Brown","doi":"10.1093/biomtc/ujae117","DOIUrl":"https://doi.org/10.1093/biomtc/ujae117","url":null,"abstract":"<p><p>Over the last three decades, case-crossover designs have found many applications in health sciences, especially in air pollution epidemiology. They are typically used, in combination with partial likelihood techniques, to define a conditional logistic model for the responses, usually health outcomes, conditional on the exposures. Despite the fact that conditional logistic models have been shown equivalent, in typical air pollution epidemiology setups, to specific instances of the well-known Poisson time series model, it is often claimed that they cannot allow for overdispersion. This paper clarifies the relationship between case-crossover designs, the models that ensue from their use, and overdispersion. In particular, we propose to relax the assumption of independence between individuals traditionally made in case-crossover analyses, in order to explicitly introduce overdispersion in the conditional logistic model. As we show, the resulting overdispersed conditional logistic model coincides with the overdispersed, conditional Poisson model, in the sense that their likelihoods are simple re-expressions of one another. We further provide the technical details of a Bayesian implementation of the proposed case-crossover model, which we use to demonstrate, by means of a large simulation study, that standard case-crossover models can lead to dramatically underestimated coverage probabilities, while the proposed models do not. We also perform an illustrative analysis of the association between air pollution and morbidity in Toronto, Canada, which shows that the proposed models are more robust than standard ones to outliers such as those associated with public holidays.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hierarchical random effects state-space model for modeling brain activities from electroencephalogram data. 根据脑电图数据建立大脑活动模型的分层随机效应状态空间模型。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae130
Xingche Guo, Bin Yang, Ji Meng Loh, Qinxia Wang, Yuanjia Wang
{"title":"A hierarchical random effects state-space model for modeling brain activities from electroencephalogram data.","authors":"Xingche Guo, Bin Yang, Ji Meng Loh, Qinxia Wang, Yuanjia Wang","doi":"10.1093/biomtc/ujae130","DOIUrl":"10.1093/biomtc/ujae130","url":null,"abstract":"<p><p>Mental disorders present challenges in diagnosis and treatment due to their complex and heterogeneous nature. Electroencephalogram (EEG) has shown promise as a source of potential biomarkers for these disorders. However, existing methods for analyzing EEG signals have limitations in addressing heterogeneity and capturing complex brain activity patterns between regions. This paper proposes a novel random effects state-space model (RESSM) for analyzing large-scale multi-channel resting-state EEG signals, accounting for the heterogeneity of brain connectivities between groups and individual subjects. We incorporate multi-level random effects for temporal dynamical and spatial mapping matrices and address non-stationarity so that the brain connectivity patterns can vary over time. The model is fitted under a Bayesian hierarchical model framework coupled with a Gibbs sampler. Compared to previous mixed-effects state-space models, we directly model high-dimensional random effects matrices of interest without structural constraints and tackle the challenge of identifiability. Through extensive simulation studies, we demonstrate that our approach yields valid estimation and inference. We apply RESSM to a multi-site clinical trial of major depressive disorder (MDD). Our analysis uncovers significant differences in resting-state brain temporal dynamics among MDD patients compared to healthy individuals. In addition, we show the subject-level EEG features derived from RESSM exhibit a superior predictive value for the heterogeneous treatment effect compared to the EEG frequency band power, suggesting the potential of EEG as a valuable biomarker for MDD.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exploratory penalized regression to identify combined effects of temporal variables-application to agri-environmental issues. 用于确定时间变量综合效应的探索性惩罚回归--应用于农业环境问题。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae134
Bénedicte Fontez, Patrice Loisel, Thierry Simonneau, Nadine Hilgert
{"title":"An exploratory penalized regression to identify combined effects of temporal variables-application to agri-environmental issues.","authors":"Bénedicte Fontez, Patrice Loisel, Thierry Simonneau, Nadine Hilgert","doi":"10.1093/biomtc/ujae134","DOIUrl":"https://doi.org/10.1093/biomtc/ujae134","url":null,"abstract":"<p><p>The development of sensors is opening new avenues in several fields of activity. Concerning agricultural crops, complex combinations of agri-environmental dynamics, such as soil and climate variables, are now commonly recorded. These new kinds of measurements are an opportunity to improve knowledge of the drivers of crop yield and crop quality at harvest. This involves renewing statistical approaches to account for the combined variations of these dynamic variables, here considered as temporal variables. The objective of the paper is to estimate an interpretable model to study the influence of the two combined inputs on a scalar output. A Sparse and Structured Procedure is proposed to Identify Combined Effects of Formatted temporal Predictors, hereafter denoted S piceFP. The method is based on the transformation of both temporal variables into categorical variables by defining joint modalities, from which a collection of multiple regression models is then derived. The regressors are the frequencies associated with joint class intervals. The class intervals and related regression coefficients are determined using a generalized fused lasso. S piceFP is a generic and exploratory approach. The simulations we performed show that it is flexible enough to select the non-null or influential modalities of values. A motivating example for grape quality is presented.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Referees 2024. 承认裁判2024年。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae162
{"title":"Acknowledgment of Referees 2024.","authors":"","doi":"10.1093/biomtc/ujae162","DOIUrl":"https://doi.org/10.1093/biomtc/ujae162","url":null,"abstract":"","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-parametric sensitivity analysis for trials with irregular and informative assessment times. 评估时间不规则且信息丰富的试验的半参数敏感性分析。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae154
Bonnie B Smith, Yujing Gao, Shu Yang, Ravi Varadhan, Andrea J Apter, Daniel O Scharfstein
{"title":"Semi-parametric sensitivity analysis for trials with irregular and informative assessment times.","authors":"Bonnie B Smith, Yujing Gao, Shu Yang, Ravi Varadhan, Andrea J Apter, Daniel O Scharfstein","doi":"10.1093/biomtc/ujae154","DOIUrl":"10.1093/biomtc/ujae154","url":null,"abstract":"<p><p>Many trials are designed to collect outcomes at or around pre-specified times after randomization. If there is variability in the times when participants are actually assessed, this can pose a challenge to learning the effect of treatment, since not all participants have outcome assessments at the times of interest. Furthermore, observed outcome values may not be representative of all participants' outcomes at a given time. Methods have been developed that account for some types of such irregular and informative assessment times; however, since these methods rely on untestable assumptions, sensitivity analyses are needed. We develop a sensitivity analysis methodology that is benchmarked at the explainable assessment (EA) assumption, under which assessment and outcomes at each time are related only through data collected prior to that time. Our method uses an exponential tilting assumption, governed by a sensitivity analysis parameter, that posits deviations from the EA assumption. Our inferential strategy is based on a new influence function-based, augmented inverse intensity-weighted estimator. Our approach allows for flexible semiparametric modeling of the observed data, which is separated from specification of the sensitivity parameter. We apply our method to a randomized trial of low-income individuals with uncontrolled asthma, and we illustrate implementation of our estimation procedure in detail.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive randomization methods for sequential multiple assignment randomized trials (smarts) via thompson sampling. 基于汤普森抽样的顺序多任务随机试验的自适应随机化方法。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae152
Peter Norwood, Marie Davidian, Eric Laber
{"title":"Adaptive randomization methods for sequential multiple assignment randomized trials (smarts) via thompson sampling.","authors":"Peter Norwood, Marie Davidian, Eric Laber","doi":"10.1093/biomtc/ujae152","DOIUrl":"10.1093/biomtc/ujae152","url":null,"abstract":"<p><p>Response-adaptive randomization (RAR) has been studied extensively in conventional, single-stage clinical trials, where it has been shown to yield ethical and statistical benefits, especially in trials with many treatment arms. However, RAR and its potential benefits are understudied in sequential multiple assignment randomized trials (SMARTs), which are the gold-standard trial design for evaluation of multi-stage treatment regimes. We propose a suite of RAR algorithms for SMARTs based on Thompson Sampling (TS), a widely used RAR method in single-stage trials in which treatment randomization probabilities are aligned with the estimated probability that the treatment is optimal. We focus on two common objectives in SMARTs: (1) comparison of the regimes embedded in the trial and (2) estimation of an optimal embedded regime. We develop valid post-study inferential procedures for treatment regimes under the proposed algorithms. This is nontrivial, as even in single-stage settings standard estimators of an average treatment effect can have nonnormal asymptotic behavior under RAR. Our algorithms are the first for RAR in multi-stage trials that account for non-standard limiting behavior due to RAR. Empirical studies based on real-world SMARTs show that TS can improve in-trial subject outcomes without sacrificing efficiency for post-trial comparisons.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient joint model for high dimensional longitudinal and survival data via generic association features. 基于通用关联特征的高维纵向数据和生存数据的高效联合模型。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae149
Van Tuan Nguyen, Adeline Fermanian, Antoine Barbieri, Sarah Zohar, Anne-Sophie Jannot, Simon Bussy, Agathe Guilloux
{"title":"An efficient joint model for high dimensional longitudinal and survival data via generic association features.","authors":"Van Tuan Nguyen, Adeline Fermanian, Antoine Barbieri, Sarah Zohar, Anne-Sophie Jannot, Simon Bussy, Agathe Guilloux","doi":"10.1093/biomtc/ujae149","DOIUrl":"https://doi.org/10.1093/biomtc/ujae149","url":null,"abstract":"<p><p>This paper introduces a prognostic method called FLASH that addresses the problem of joint modeling of longitudinal data and censored durations when a large number of both longitudinal and time-independent features are available. In the literature, standard joint models are either of the shared random effect or joint latent class type. Combining ideas from both worlds and using appropriate regularization techniques, we define a new model with the ability to automatically identify significant prognostic longitudinal features in a high-dimensional context, which is of increasing importance in many areas such as personalized medicine or churn prediction. We develop an estimation methodology based on the expectation-maximization algorithm and provide an efficient implementation. The statistical performance of the method is demonstrated both in extensive Monte Carlo simulation studies and on publicly available medical datasets. Our method significantly outperforms the state-of-the-art joint models in terms of C-index in a so-called \"real-time\" prediction setting, with a computational speed that is orders of magnitude faster than competing methods. In addition, our model automatically identifies significant features that are relevant from a practical point of view, making it interpretable, which is of the greatest importance for a prognostic algorithm in healthcare.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Debiased high-dimensional regression calibration for errors-in-variables log-contrast models. 变量误差对数对比模型的去偏高维回归校正。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae153
Huali Zhao, Tianying Wang
{"title":"Debiased high-dimensional regression calibration for errors-in-variables log-contrast models.","authors":"Huali Zhao, Tianying Wang","doi":"10.1093/biomtc/ujae153","DOIUrl":"https://doi.org/10.1093/biomtc/ujae153","url":null,"abstract":"<p><p>Motivated by the challenges in analyzing gut microbiome and metagenomic data, this work aims to tackle the issue of measurement errors in high-dimensional regression models that involve compositional covariates. This paper marks a pioneering effort in conducting statistical inference on high-dimensional compositional data affected by mismeasured or contaminated data. We introduce a calibration approach tailored for the linear log-contrast model. Under relatively lenient conditions regarding the sparsity level of the parameter, we have established the asymptotic normality of the estimator for inference. Numerical experiments and an application in microbiome study have demonstrated the efficacy of our high-dimensional calibration strategy in minimizing bias and achieving the expected coverage rates for confidence intervals. Moreover, the potential application of our proposed methodology extends well beyond compositional data, suggesting its adaptability for a wide range of research contexts.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changepoint detection on daily home activity pattern: a sliced Poisson process method. 日常居家活动模式的变化点检测:一种切片泊松过程方法。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae114
Israel Martínez-Hernández, Rebecca Killick
{"title":"Changepoint detection on daily home activity pattern: a sliced Poisson process method.","authors":"Israel Martínez-Hernández, Rebecca Killick","doi":"10.1093/biomtc/ujae114","DOIUrl":"https://doi.org/10.1093/biomtc/ujae114","url":null,"abstract":"<p><p>The problem of health and care of people is being revolutionized. An important component of that revolution is disease prevention and health improvement from home. A natural approach to the health problem is monitoring changes in people's behavior or activities. These changes can be indicators of potential health problems. However, due to a person's daily pattern, changes will be observed throughout each day, with, eg, an increase of events around meal times and fewer events during the night. We do not wish to detect such within-day changes but rather changes in the daily behavior pattern from one day to the next. To this end, we assume the set of event times within a given day as a single observation. We model this observation as the realization of an inhomogeneous Poisson process where the rate function can vary with the time of day. Then, we propose to detect changes in the sequence of inhomogeneous Poisson processes. This approach is appropriate for many phenomena, particularly for home activity data. Our methodology is evaluated on simulated data. Overall, our approach uses local change information to detect changes across days. At the same time, it allows us to visualize and interpret the results, changes, and trends over time, allowing the detection of potential health decline.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional generalized canonical correlation analysis for studying multiple longitudinal variables. 用于研究多个纵向变量的功能广义典型相关分析。
IF 1.4 4区 数学
Biometrics Pub Date : 2024-10-03 DOI: 10.1093/biomtc/ujae113
Lucas Sort, Laurent Le Brusquet, Arthur Tenenhaus
{"title":"Functional generalized canonical correlation analysis for studying multiple longitudinal variables.","authors":"Lucas Sort, Laurent Le Brusquet, Arthur Tenenhaus","doi":"10.1093/biomtc/ujae113","DOIUrl":"https://doi.org/10.1093/biomtc/ujae113","url":null,"abstract":"<p><p>In this paper, we introduce functional generalized canonical correlation analysis, a new framework for exploring associations between multiple random processes observed jointly. The framework is based on the multiblock regularized generalized canonical correlation analysis framework. It is robust to sparsely and irregularly observed data, making it applicable in many settings. We establish the monotonic property of the solving procedure and introduce a Bayesian approach for estimating canonical components. We propose an extension of the framework that allows the integration of a univariate or multivariate response into the analysis, paving the way for predictive applications. We evaluate the method's efficiency in simulation studies and present a use case on a longitudinal dataset.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信