Ajmery Jaman, Guanbo Wang, Ashkan Ertefaie, Michèle Bally, Renée Lévesque, Robert W Platt, Mireille E Schnitzer
{"title":"在重复结果的结构嵌套平均模型中对效果修饰符选择的惩罚g估计。","authors":"Ajmery Jaman, Guanbo Wang, Ashkan Ertefaie, Michèle Bally, Renée Lévesque, Robert W Platt, Mireille E Schnitzer","doi":"10.1093/biomtc/ujae165","DOIUrl":null,"url":null,"abstract":"<p><p>Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. A data-adaptive selection approach is necessary if the effect modifiers are unknown a priori and need to be identified. Although variable selection techniques are available for estimating the conditional average treatment effects using marginal structural models or for developing optimal dynamic treatment regimens, all of these methods consider a single end-of-follow-up outcome. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and prove the oracle property of our estimator. We conduct a simulation study for the evaluation of its performance in finite samples and verification of its double-robustness property. Our work is motivated by the study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Université de Montréal. We apply the proposed method to investigate the effect heterogeneity of dialysis facility on the repeated session-specific hemodiafiltration outcomes.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penalized G-estimation for effect modifier selection in a structural nested mean model for repeated outcomes.\",\"authors\":\"Ajmery Jaman, Guanbo Wang, Ashkan Ertefaie, Michèle Bally, Renée Lévesque, Robert W Platt, Mireille E Schnitzer\",\"doi\":\"10.1093/biomtc/ujae165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. A data-adaptive selection approach is necessary if the effect modifiers are unknown a priori and need to be identified. Although variable selection techniques are available for estimating the conditional average treatment effects using marginal structural models or for developing optimal dynamic treatment regimens, all of these methods consider a single end-of-follow-up outcome. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and prove the oracle property of our estimator. We conduct a simulation study for the evaluation of its performance in finite samples and verification of its double-robustness property. Our work is motivated by the study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Université de Montréal. We apply the proposed method to investigate the effect heterogeneity of dialysis facility on the repeated session-specific hemodiafiltration outcomes.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae165\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae165","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Penalized G-estimation for effect modifier selection in a structural nested mean model for repeated outcomes.
Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. A data-adaptive selection approach is necessary if the effect modifiers are unknown a priori and need to be identified. Although variable selection techniques are available for estimating the conditional average treatment effects using marginal structural models or for developing optimal dynamic treatment regimens, all of these methods consider a single end-of-follow-up outcome. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and prove the oracle property of our estimator. We conduct a simulation study for the evaluation of its performance in finite samples and verification of its double-robustness property. Our work is motivated by the study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Université de Montréal. We apply the proposed method to investigate the effect heterogeneity of dialysis facility on the repeated session-specific hemodiafiltration outcomes.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.