Bioinorganic Chemistry and Applications最新文献

筛选
英文 中文
Schiff Bases From 4-Aminoantipyrine: Investigation of Their In Silico, Antimicrobial, and Anticancer Effects and Their Use in Glucose Biosensor Design. 4-氨基安替比林的希夫碱:它们的硅、抗菌和抗癌作用及其在葡萄糖生物传感器设计中的应用
IF 4.7 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2025-04-01 eCollection Date: 2025-01-01 DOI: 10.1155/bca/2786064
Aşkın Erbaş, Selinsu Dikim, Fatma Arslan, Onur Can Bodur, Seza Arslan, Fatma Özdemir, Nurşen Sarı
{"title":"Schiff Bases From 4-Aminoantipyrine: Investigation of Their In Silico, Antimicrobial, and Anticancer Effects and Their Use in Glucose Biosensor Design.","authors":"Aşkın Erbaş, Selinsu Dikim, Fatma Arslan, Onur Can Bodur, Seza Arslan, Fatma Özdemir, Nurşen Sarı","doi":"10.1155/bca/2786064","DOIUrl":"https://doi.org/10.1155/bca/2786064","url":null,"abstract":"<p><p>Five new Schiff bases from 4-aminoantipyrine were synthesized, characterized, and evaluated for their antimicrobial and DNA cleavage activities, and drug similarity properties and cytotoxicity prediction using in silico analysis. All Schiff bases had good antibacterial and antifungal activities. All compounds showed self-activating DNA cleavage ability in the absence of any reductant or oxidant at low concentrations. Modified carbon paste electrodes were prepared with all Schiff bases, and a glucose biosensor was designed. Schiff base coded (4AA-Fc) was found to have the best sensitivity to H<sub>2</sub>O<sub>2</sub>. It was observed that the prepared biosensor has a working range at low concentrations (1.0 × 10<sup>-7</sup>-1.0 × 10<sup>-6</sup> M (<i>R</i> <sup>2</sup> = 1.0)) and a low detection limit (1.0 × 10<sup>-8</sup> M). At the same time, 4AA-Fc was found to be a potent compound for bactericidal and fungicidal effect, killing pathogens. Thus, it could be used for the development of a resistant biosensor in external environment. It also showed a complete DNA degradation. In silico ADME analysis and cell line cytotoxicity studies found these new Schiff bases to have favorable drug-like properties, indicating potential for the development of therapeutic drugs. In particular, the compounds were not a P-gp substrate. Thus, they could be a potential anticancer agent. The present study may be useful for further scientific research in the field of the design, synthesis, and biological studies of bioactive substances.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2025 ","pages":"2786064"},"PeriodicalIF":4.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Innovative Approach Based on the Green Synthesis of Silver Nanoparticles Using Pomegranate Peel Extract for Antibacterial Purposes. 利用石榴皮提取物绿色合成银纳米粒子用于抗菌的创新方法。
IF 4.7 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI: 10.1155/bca/2009069
Rocío Díaz-Puertas, Francisco J Álvarez-Martínez, Enrique Rodríguez-Cañas, Fernando Borrás, Artur J M Valente, José A Paixao, Alberto Falcó, Ricardo Mallavia
{"title":"An Innovative Approach Based on the Green Synthesis of Silver Nanoparticles Using Pomegranate Peel Extract for Antibacterial Purposes.","authors":"Rocío Díaz-Puertas, Francisco J Álvarez-Martínez, Enrique Rodríguez-Cañas, Fernando Borrás, Artur J M Valente, José A Paixao, Alberto Falcó, Ricardo Mallavia","doi":"10.1155/bca/2009069","DOIUrl":"10.1155/bca/2009069","url":null,"abstract":"<p><p>This study describes a green synthesis method for silver nanoparticles (AgNPs) using autochthonous \"Mollar de Elche\" pomegranate peel extract and optimized through a Python-programmed Box-Behnken design (BBD) created specifically for the work. The bioactive compounds in pomegranate, particularly punicalagin, serve as effective reducing and stabilizing agents. BBD was used to analyze the effects of dependent variables such as silver nitrate concentration, pomegranate extract concentration, and temperature on responses such as hydrodynamic diameter, polydispersity index, and zeta potential, minimizing experimental trials and highlighting variable interactions. Optimal conditions were experimentally validated and agreed well with the predicted values. The optimized AgNPs were characterized via ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, X-ray diffraction, and field emission scanning electron microscopy. These AgNPs demonstrated substantial antibacterial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. Furthermore, the AgNPs were incorporated into nanofibrous scaffolds as a proof of concept for potential biomedical applications, where their antibacterial activity was partially retained postincorporation. This study highlights the potential of pomegranate extract as a sustainable medium for AgNP synthesis with promising antibacterial applications and the ability of the BBD as a useful tool for efficient optimization of multivariable processes, including the synthesis of nanomaterials.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2025 ","pages":"2009069"},"PeriodicalIF":4.7,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review of the Biological Activities of Medicinal Metal Complexes Synthesized From Quinoline Scaffolds. 喹啉类支架合成的药用金属配合物的生物活性综述。
IF 4.7 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2025-02-11 eCollection Date: 2025-01-01 DOI: 10.1155/bca/3133615
Sabikeh G Azimi, Neda Shakour, Ghodsieh Bagherzade, Mohammad Reza Saberi, Hosseinali Azimi, Mehdi Moosavi F
{"title":"A Comprehensive Review of the Biological Activities of Medicinal Metal Complexes Synthesized From Quinoline Scaffolds.","authors":"Sabikeh G Azimi, Neda Shakour, Ghodsieh Bagherzade, Mohammad Reza Saberi, Hosseinali Azimi, Mehdi Moosavi F","doi":"10.1155/bca/3133615","DOIUrl":"10.1155/bca/3133615","url":null,"abstract":"<p><p>The compelling attributes of quinoline scaffolds in medicinal compounds have garnered considerable attention from researchers, due to their notable biological efficacy, biocompatibility, and distinctive photophysical properties. Quinoline complexes, in particular, have emerged as significant entities, demonstrating a wide array of medicinal properties, including antibacterial, antifungal, antiviral, anticancer, anthelmintic, anti-HIV, antioxidant, antituberculosis, and antimalarial activities. In addition, they showed promise in photodynamic and neurological studies, along with strong DNA-binding capabilities. In recent years (2010-2023), substantial progress has been made in understanding quinoline complexes. Key aspects such as the lipophilicity, of metal complexes, enzymatic drug degradation factors influencing inhibition, drug performance, disruption of target cell growth, and their impact on DNA have been thoroughly investigated. Researchers have employed advanced methodologies including fluorescent imaging, determination of MIC and IC<sub>50</sub> values, hydrodynamic and spectrophotometric techniques, in silico and in vitro studies, and cytotoxicity assessments using the MTT method, to significantly enhance our understanding of these complexes. Recent findings indicated that the interaction of quinoline complexes with viral proteins and their ability to disrupt enzyme-viral DNA relationships have made them powerful therapeutic agents for severe diseases including cancer, AIDS, and coronaviruses, as well as various neurological and microbial infections. It is anticipated that these explorations will lead to effective advancements in therapeutic strategies within modern medicine.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2025 ","pages":"3133615"},"PeriodicalIF":4.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decavanadate Compound Displays In Vitro and In Vivo Antitumor Effect on Melanoma Models. Decavanadate化合物在黑色素瘤模型中显示出体外和体内抗肿瘤作用。
IF 4.7 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2025-01-11 eCollection Date: 2025-01-01 DOI: 10.1155/bca/6680022
Amine Essid, Ines Elbini, Regaya Ksiksi, Nardine Harrab, Wassim Moslah, Imen Jendoubi, Raoudha Doghri, Mohamed-Faouzi Zid, José Luis, Najet Srairi-Abid
{"title":"Decavanadate Compound Displays In Vitro and In Vivo Antitumor Effect on Melanoma Models.","authors":"Amine Essid, Ines Elbini, Regaya Ksiksi, Nardine Harrab, Wassim Moslah, Imen Jendoubi, Raoudha Doghri, Mohamed-Faouzi Zid, José Luis, Najet Srairi-Abid","doi":"10.1155/bca/6680022","DOIUrl":"10.1155/bca/6680022","url":null,"abstract":"<p><p>The efficacy of available treatments for melanoma is limited by side effects and the rapidly emerging resistance to treatment. In this context, the decavanadate compounds represent promising tools to design efficient therapeutic agents. In our study, we synthesized a dimagnesium disodium decavanadate icosahydrate compound (Mg<sub>2</sub>Na<sub>2</sub>V<sub>10</sub>O<sub>28</sub>·20H<sub>2</sub>O) and investigated its structure stability as well as its antimelanoma effects. Results showed that the Mg<sub>2</sub>Na<sub>2</sub>V<sub>10</sub>O<sub>28</sub>·20H<sub>2</sub>O compound is structured in a monoclinic system with the space group C2/c, stabilized by oxygen vertices, hydrogen bonds, and van der Waals interactions. Interestingly, we found that this newly synthesized compound reduced the viability of human (IGR39, IGR37, and SKMEL28) and murine (B16-F10) melanoma cells in a dose-dependent manner. The IC<sub>50</sub> values ranged from 7.3 to 18 μM after 24 h and decreased to 1.4 μM after 72 h of treatment. Notably, this effect was more important than that of cisplatin (IC<sub>50</sub> = 3 μM after 72 h of treatment), a chemotherapeutic agent, commonly used in the treatment of malignant melanoma. Furthermore, the cytotoxicity of the decavanadate compound was relatively weak on normal human keratinocytes (HaCaT), with a light effect (IC<sub>50</sub> >> 70 μM) observed after 24 h of treatment. Thus, the Mg<sub>2</sub>Na<sub>2</sub>V<sub>10</sub>O<sub>28</sub>·20H<sub>2</sub>O compound displayed an advantage over cisplatin, which was reported to be much more aggressive to the keratinocyte cell line (IC<sub>50</sub> = 23.9 μM). Moreover, it inhibited dose-dependently the adhesion of IGR39 cells to collagen (IC<sub>50</sub> = 2.67 μM) and fibronectin, as well as their migration with an IC<sub>50</sub> value of 2.23 μM. More interestingly, its in vivo administration to B16-F10 allografted mice, at the nontoxic dose of 50 μg (2.5 mg/kg), prevented and suppressed by 70% the tumor growth, compared to the nontreated mice. Moreover, this compound has also allowed a recovery against inflammation induced in mice by a mixture of DMBA and croton oil. Thus, all our results showed the potential of the Mg<sub>2</sub>Na<sub>2</sub>V<sub>10</sub>O<sub>28</sub>·20H<sub>2</sub>O compound to prevent and efficiently treat the growth and metastasis of melanoma.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2025 ","pages":"6680022"},"PeriodicalIF":4.7,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells. 新型Pt (II)复合物对胰腺导管腺癌细胞具有抗癌活性。
IF 4.7 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2024-12-31 eCollection Date: 2024-01-01 DOI: 10.1155/bca/5588491
Erika Stefàno, Gianluca Rovito, Luca G Cossa, Federica De Castro, Viviana Vergaro, Asjad Ali, Giulia My, Danilo Migoni, Antonella Muscella, Santo Marsigliante, Michele Benedetti, Francesco Paolo Fanizzi
{"title":"Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells.","authors":"Erika Stefàno, Gianluca Rovito, Luca G Cossa, Federica De Castro, Viviana Vergaro, Asjad Ali, Giulia My, Danilo Migoni, Antonella Muscella, Santo Marsigliante, Michele Benedetti, Francesco Paolo Fanizzi","doi":"10.1155/bca/5588491","DOIUrl":"10.1155/bca/5588491","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. <i>cis</i>-[PtCl<sub>2</sub> (NH<sub>3</sub>)<sub>2</sub>] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents. Platinum-based drugs containing the bidentate ligand phenanthroline have been found to have strong antitumor activity due to their ability to cause DNA damage. In this study, we examined the ability of two Pt (II) cationic complexes, [Pt(<i>η</i> <sup>1</sup>-C<sub>2</sub>H<sub>4</sub>OR) (DMSO) (phen)]<sup>+</sup> (in short Pt-EtORSOphen; <i>R</i> = Me, <b>1</b>; Et, <b>2</b>), to inhibit the growth and spread of BxPC-3 PDAC cells, in comparison to CDDP. The length of the alkyl chain and its associated lipophilic properties did not affect the anticancer effects of complexes <b>1</b> and <b>2</b> in BxPC-3 cells. However, it did appear to influence the rapid loss of mitochondrial membrane potential (ΔΨ<sub>M</sub>), suggesting that these complexes could potentially be used as mitochondria-targeted lipophilic cations in anticancer therapy.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2024 ","pages":"5588491"},"PeriodicalIF":4.7,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogenic Synthesis of Photosensitive Magnesium Oxide Nanoparticles Using Citron Waste Peel Extract and Evaluation of Their Antibacterial and Anticarcinogenic Potential. 利用香橼废皮提取物生物合成光敏氧化镁纳米粒子并评估其抗菌和抗癌潜力
IF 4.7 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2024-06-06 eCollection Date: 2024-01-01 DOI: 10.1155/2024/8180102
Nawal M Al Musayeib, Musarat Amina, Farah Maqsood, Kholoud A Bokhary, Nada S Alrashidi
{"title":"Biogenic Synthesis of Photosensitive Magnesium Oxide Nanoparticles Using Citron Waste Peel Extract and Evaluation of Their Antibacterial and Anticarcinogenic Potential.","authors":"Nawal M Al Musayeib, Musarat Amina, Farah Maqsood, Kholoud A Bokhary, Nada S Alrashidi","doi":"10.1155/2024/8180102","DOIUrl":"10.1155/2024/8180102","url":null,"abstract":"<p><strong>Background: </strong>Magnesium oxide nanoparticles (MgONPs) have been fabricated by several approaches, including green chemistry approach due to diverse application and versatile features.</p><p><strong>Objectives: </strong>The current study aimed to prepare a convenient, biocompatible, and economically viable MgONPs using waste citron peel extract (CP-MgONPs) to evaluate their biological applications.</p><p><strong>Methods: </strong>The CP-MgONPs were synthesized by a sustainable approach from extract of waste citron peel both as capping and reducing agents without use of any hazardous material. The physicochemical features of formed CP-MgONPs were determined by sophisticated analytical and microscopic techniques. The biogenic CP-MgONPs were examined for their antibacterial, anticarcinogenic, and photocatalytic attributes.</p><p><strong>Results: </strong>A prominent absorption peak in the UV-Vis spectra at 284 nm was the distinguishing characteristic of the CP-MgONPs. The scanning electron microscopy (SEM) reveals polyhedral morphology of nanoparticles with slight agglomeration of CP-MgONPs. The CP-MgONPs exerted excellent antibacterial potencies against six bacterial strains. The CP-MgONPs displayed significant susceptibility towards <i>E. coli</i> (20.72 ± 0.33 mm) and <i>S. aureus</i> (19.52 ± 0.05 mm) with the highest inhibition zones. The anticancer effect of CP-MgONPs was evaluated against HepG2 (IC<sub>50</sub> : 15.3 <i>μ</i>g·mL<sup>-1</sup>) cancer cells and exhibited potential anticancer activity. A prompt inversion of cellular injury manifested as impairment of the integrity of the cell membrane, apoptosis, and oxidative stress was observed in treated cells with CP-MgONPs. The biosynthesized CP-MgONPs also conducted successful photocatalytic potential as much as MgO powder under the UV-light using acid orange 8 (AO-8) dye. The degradation performance of CP-MgONPs showed over 94% photocatalytic degradation efficiency of acid orange 8 (AO-8) dyes within a short time.</p><p><strong>Conclusions: </strong>Outcomes of this research signify that biogenic CP-MgONPs may be advantageous at low concentrations, with positive environmental impacts.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2024 ","pages":"8180102"},"PeriodicalIF":4.7,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Structure, Spectroscopic, Frontier Molecular Orbital Analysis, Molecular Docking Studies, and In Vitro DNA-Binding Studies of Osmium(II)-Cymene Complexes with Aryl Phosphine and Aryl Phosphonium Assemblies 带有芳基膦和芳基鏻组装的锇(II)-百里香配合物的分子结构、光谱、前沿分子轨道分析、分子对接研究和体外 DNA 结合研究
IF 3.8 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2024-05-29 DOI: 10.1155/2024/6697523
Kgaugelo C. Tapala, Nqobile G. Ndlangamandla, Mpho P. Ngoepe, Hadley S. Clayton
{"title":"Molecular Structure, Spectroscopic, Frontier Molecular Orbital Analysis, Molecular Docking Studies, and In Vitro DNA-Binding Studies of Osmium(II)-Cymene Complexes with Aryl Phosphine and Aryl Phosphonium Assemblies","authors":"Kgaugelo C. Tapala, Nqobile G. Ndlangamandla, Mpho P. Ngoepe, Hadley S. Clayton","doi":"10.1155/2024/6697523","DOIUrl":"https://doi.org/10.1155/2024/6697523","url":null,"abstract":"X-ray crystallography, spectroscopy, computational methods, molecular docking studies, and <i>in vitro</i> DNA-binding studies have been useful in the investigations of intermolecular and intramolecular interactions of osmium-cymene oxalato complexes with aryl phosphine and aryl phosphonium groups in both primary and secondary coordination spheres, respectively. Molecular structures of the novel complexes PPh<sub>4</sub>[Os(<i>η</i><sup>6</sup>-<i>p</i>-cymene)Br(<i>κ</i><sup>2</sup>-<i>O,O′</i>-C<sub>2</sub>O<sub>4</sub>)] (<b>1</b>) and [Os(<i>η</i><sup>6</sup>-<i>p</i>-cymene) (<i>κ</i><sup>2</sup>-<i>O,O′</i>-C<sub>2</sub>O<sub>4</sub>)PPh<sub>3</sub>] (<b>2</b>) were resolved by single-crystal X-ray diffraction (XRD). Primary and secondary coordination sphere contacts were investigated using Hirshfeld surface analysis which was supported by molecular docking (MD) studies. The MD data obtained predicted significant differences in binding energy across three receptors for the two osmium complexes. An <i>in vitro</i> DNA-binding study was accomplished using UV-Vis spectroscopy which showed that both <b>1</b> and <b>2</b> bond with DNA through an intercalation approach. The optimized molecular geometry, frontier molecular orbital (E<sub>HOMO</sub> and E<sub>LUMO</sub>) energies, global electrophilicity index (<i>ω</i>), chemical hardness (<i>η</i>), chemical potential (<i>µ</i>), and the energy band gap (E<sub>HOMO</sub>–E<sub>LUMO</sub>) were calculated utilizing density functional theory (DFT) methods. Computed structural parameters (bond lengths and angles) support the experimental single-crystal XRD data.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"41 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Tin (IV) and Organotin (IV) Complexes with a Hybrid Thiosemicarbazone/Hydrazone Ligand: Synthesis, Crystal Structure, and Antiproliferative Activity 新的锡(IV)和有机锡(IV)配合物与混合硫代氨基甲酸酮/腙配体:合成、晶体结构和抗增殖活性
IF 3.8 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2024-04-03 DOI: 10.1155/2024/1018375
Belén Blázquez-Tapias, Satyajit Halder, M. Antonia Mendiola, Nivedita Roy, Nilima Sahu, Chittaranjan Sinha, Kuladip Jana, Elena López-Torres
{"title":"New Tin (IV) and Organotin (IV) Complexes with a Hybrid Thiosemicarbazone/Hydrazone Ligand: Synthesis, Crystal Structure, and Antiproliferative Activity","authors":"Belén Blázquez-Tapias, Satyajit Halder, M. Antonia Mendiola, Nivedita Roy, Nilima Sahu, Chittaranjan Sinha, Kuladip Jana, Elena López-Torres","doi":"10.1155/2024/1018375","DOIUrl":"https://doi.org/10.1155/2024/1018375","url":null,"abstract":"Nowadays, the search for new chemotherapeutic agents with low toxicity and high selectivity is a major concern. In this paper, we report the synthesis and characterization of a hybrid thiosemicarbazone/hydrazone ligand in its neutral form (L<sup>1</sup>H<sub>2</sub>) and as the chloride salt ([L<sup>1</sup>H<sub>3</sub>]Cl)-, three diorganotin (IV) complexes, and one complex with Sn (IV). The compounds have been fully characterized by IR, mass spectra, <sup>1</sup>H, <sup>13</sup>C, and <sup>119</sup>Sn NMR, <sup>119</sup>Sn CP/MAS NMR, and by single crystal X-ray diffraction. The organotin compounds have the empirical formula [SnR<sub>2</sub>L<sup>1</sup>] (<i>R</i> = Me, Bu, and Ph), but in the solid state, they are polymeric species with seven coordination number due to weak coordination of the pyridine nitrogen, whereas in solution, the polymeric structure is lost to afford hexacoordinate monomeric species. Reaction with SnI<sub>4</sub> yields complex [Sn (L<sup>1</sup>)<sub>2</sub>]·EtOH, with the metal in a distorted dodecahedral arrangement. We have evaluated the antiproliferative activity of the two forms of the ligands and the four coordination compounds against MDA-MB-231, HeLa, PC3, and HepG2 cancer cell lines, and WI-38 normal cell line, and all the compounds present higher activity than cisplatin, used as the standard control. To investigate the mode of action, we have selected the most active complex, containing phenyl substituents, and used the triple negative breast cancer cell line MDA-MB-231. The results show that the complex induces apoptotic cell death promoted by generation of reactive oxygen species and by disruption of mitochondrial membrane potential.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"50 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140580973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Characterization of Paclitaxel-Loaded Silver Nanoparticles: Evaluation of Cytotoxic Effects and Antimicrobial Activity 紫杉醇负载银纳米粒子的合成与表征:细胞毒性效应和抗菌活性评估
IF 3.8 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2024-02-13 DOI: 10.1155/2024/9916187
Tutku Tunç, Ceylan Hepokur, Afşin Kari̇per
{"title":"Synthesis and Characterization of Paclitaxel-Loaded Silver Nanoparticles: Evaluation of Cytotoxic Effects and Antimicrobial Activity","authors":"Tutku Tunç, Ceylan Hepokur, Afşin Kari̇per","doi":"10.1155/2024/9916187","DOIUrl":"https://doi.org/10.1155/2024/9916187","url":null,"abstract":"Carrier system therapies based on combining cancer drugs with nanoparticles have been reported to control tumor growth and significantly reduce the side effects of cancer drugs. We thought that paclitaxel-loaded silver nanoparticles (AgNPs-PTX) were the right carrier to target cancer cells. We also carried out antimicrobial activity experiments as systems formed with nanoparticles have been shown to have antimicrobial activity. In our study, we used easy-to-synthesize and low-cost silver nanoparticles (AgNPs) with biocatalytic and photocatalytic advantages as drug carriers. We investigated the antiproliferative activities of silver nanoparticles synthesized by adding paclitaxel on MCF-7 (breast adenocarcinoma cell line), A549 (lung carcinoma cell line), C6 (brain glioma cell line) cells, and healthy WI-38 (fibroblast normal cell line) cell lines and their antimicrobial activities on 10 different microorganisms. The synthesized AgNPs and AgNPs-PTX were characterized by dynamic light scattering (DLS), scanning transmission electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray spectroscopy. The nanoparticles were spherical in shape, with AgNPs ranging in size from 2.32 to 5.6 nm and AgNPs-PTXs from 24.36 to 58.77 nm. AgNPs demonstrated well stability of −47.3 mV, and AgNPs-PTX showed good stability of −25.4 mV. The antiproliferative effects of the synthesized nanoparticles were determined by XTT (tetrazolium dye; 2,3-bis-(2-methoxy-4-nitro-5-sulfenyl)-(2H)-tetrazolium-5-carboxanilide), and the proapoptotic effects were determined by annexin V/propidium iodide (PI) staining. The effect of AgNPs-PTX was more effective, and anticancer activity was higher than PTX in all cell lines. When selectivity indices were calculated, AgNPs-PTX was more selective in the A549 cell line (SI value 6.53 <i>μ</i>g/mL). AgNPs-PTX was determined to increase apoptosis cells by inducing DNA fragmentation. To determine the antimicrobial activity, the MIC (minimum inhibitory concentration) test was performed using 8 different bacteria and 2 different fungi. Seven of the 10 microorganisms tested exhibited high antimicrobial activity according to the MIC ≤100 <i>μ</i>g/mL standard, reaching MIC values below 100 <i>μ</i>g/mL and 100 <i>μ</i>g/mL for both AgNPs and AgNPs-PTX compared to reference sources. Compared to standard antibiotics, AgNPs-PTX was highly effective against 4 microorganisms.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"38 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria-Targeting and Oxygen Self-Supplying Eccentric Hollow Nanoplatform for Enhanced Breast Cancer Photodynamic Therapy 用于增强乳腺癌光动力疗法的线粒体靶向和氧自给偏心中空纳米平台
IF 3.8 3区 化学
Bioinorganic Chemistry and Applications Pub Date : 2024-02-01 DOI: 10.1155/2024/6618388
Jing Li, Yu Wang, Jun Tao, Xiaodan Su, Feipeng Zhu, Wei Lu, Xiaolin Han, Meng Dang, Lixing Weng
{"title":"Mitochondria-Targeting and Oxygen Self-Supplying Eccentric Hollow Nanoplatform for Enhanced Breast Cancer Photodynamic Therapy","authors":"Jing Li, Yu Wang, Jun Tao, Xiaodan Su, Feipeng Zhu, Wei Lu, Xiaolin Han, Meng Dang, Lixing Weng","doi":"10.1155/2024/6618388","DOIUrl":"https://doi.org/10.1155/2024/6618388","url":null,"abstract":"Photodynamic therapy (PDT) has received increasing attention for tumor therapy due to its minimal invasiveness and spatiotemporal selectivity. However, the poor targeting of photosensitizer and hypoxia of the tumor microenvironment limit the PDT efficacy. Herein, eccentric hollow mesoporous organic silica nanoparticles (EHMONs) are prepared by anisotropic encapsulation and hydrothermal etching for constructing PDT nanoplatforms with targeting and hypoxia-alleviating properties. The prepared EHMONs possess a unique eccentric hollow structure, a uniform size (300 nm), a large cavity, and ordered mesoporous channels (2.3 nm). The EHMONs are modified with the mitochondria-targeting molecule triphenylphosphine (CTPP) and photosensitizers chlorin e6 (Ce6). Oxygen-carrying compound perfluorocarbons (PFCs) are further loaded in the internal cavity of EHMONs. Hemolytic assays and <i>in vitro</i> toxicity experiments show that the EHMONs-Ce6-CTPP possesses very good biocompatibility and can target mitochondria of triple-negative breast cancer, thus increasing the accumulation of photosensitizers Ce6 at mitochondria after entering cancer cells. The EHMONs-Ce6-CTPP@PFCs with oxygen-carrying ability can alleviate hypoxia after entering in the cancer cell. Phantom and cellular experiments show that the EHMONs-Ce6-CTPP@PFCs produce more singlet oxygen reactive oxygen species (ROSs). Thus, in vitro and in vivo experiments demonstrated that the EHMONs-Ce6-CTPP@PFCs showed excellent treatment effects for triple-negative breast cancer. This research provides a new method for a targeting and oxygen-carrying nanoplatform for enhancing PDF effectiveness.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"6 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139658540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信