Rocío Díaz-Puertas, Francisco J Álvarez-Martínez, Enrique Rodríguez-Cañas, Fernando Borrás, Artur J M Valente, José A Paixao, Alberto Falcó, Ricardo Mallavia
{"title":"An Innovative Approach Based on the Green Synthesis of Silver Nanoparticles Using Pomegranate Peel Extract for Antibacterial Purposes.","authors":"Rocío Díaz-Puertas, Francisco J Álvarez-Martínez, Enrique Rodríguez-Cañas, Fernando Borrás, Artur J M Valente, José A Paixao, Alberto Falcó, Ricardo Mallavia","doi":"10.1155/bca/2009069","DOIUrl":null,"url":null,"abstract":"<p><p>This study describes a green synthesis method for silver nanoparticles (AgNPs) using autochthonous \"Mollar de Elche\" pomegranate peel extract and optimized through a Python-programmed Box-Behnken design (BBD) created specifically for the work. The bioactive compounds in pomegranate, particularly punicalagin, serve as effective reducing and stabilizing agents. BBD was used to analyze the effects of dependent variables such as silver nitrate concentration, pomegranate extract concentration, and temperature on responses such as hydrodynamic diameter, polydispersity index, and zeta potential, minimizing experimental trials and highlighting variable interactions. Optimal conditions were experimentally validated and agreed well with the predicted values. The optimized AgNPs were characterized via ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, X-ray diffraction, and field emission scanning electron microscopy. These AgNPs demonstrated substantial antibacterial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. Furthermore, the AgNPs were incorporated into nanofibrous scaffolds as a proof of concept for potential biomedical applications, where their antibacterial activity was partially retained postincorporation. This study highlights the potential of pomegranate extract as a sustainable medium for AgNP synthesis with promising antibacterial applications and the ability of the BBD as a useful tool for efficient optimization of multivariable processes, including the synthesis of nanomaterials.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2025 ","pages":"2009069"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinorganic Chemistry and Applications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/bca/2009069","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study describes a green synthesis method for silver nanoparticles (AgNPs) using autochthonous "Mollar de Elche" pomegranate peel extract and optimized through a Python-programmed Box-Behnken design (BBD) created specifically for the work. The bioactive compounds in pomegranate, particularly punicalagin, serve as effective reducing and stabilizing agents. BBD was used to analyze the effects of dependent variables such as silver nitrate concentration, pomegranate extract concentration, and temperature on responses such as hydrodynamic diameter, polydispersity index, and zeta potential, minimizing experimental trials and highlighting variable interactions. Optimal conditions were experimentally validated and agreed well with the predicted values. The optimized AgNPs were characterized via ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, X-ray diffraction, and field emission scanning electron microscopy. These AgNPs demonstrated substantial antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, the AgNPs were incorporated into nanofibrous scaffolds as a proof of concept for potential biomedical applications, where their antibacterial activity was partially retained postincorporation. This study highlights the potential of pomegranate extract as a sustainable medium for AgNP synthesis with promising antibacterial applications and the ability of the BBD as a useful tool for efficient optimization of multivariable processes, including the synthesis of nanomaterials.
本研究描述了一种绿色合成银纳米粒子(AgNPs)的方法,该方法使用本土的“Mollar de Elche”石榴皮提取物,并通过专门为此工作创建的python编程Box-Behnken设计(BBD)进行优化。石榴中的生物活性成分,特别是石榴苷,是一种有效的还原剂和稳定剂。BBD用于分析因变量(如硝酸银浓度、石榴提取物浓度和温度)对流体动力直径、多分散性指数和zeta电位等响应的影响,从而最小化实验试验并突出变量的相互作用。实验验证了最优条件,与预测值吻合较好。通过紫外可见分光光度法、傅里叶变换红外光谱法、x射线衍射法和场发射扫描电镜对优化后的AgNPs进行了表征。这些AgNPs对大肠杆菌和金黄色葡萄球菌具有显著的抗菌活性。此外,将AgNPs掺入纳米纤维支架中作为潜在生物医学应用的概念证明,其掺入后的抗菌活性部分保留。该研究强调了石榴提取物作为AgNP合成的可持续培养基的潜力,具有良好的抗菌应用前景,以及BBD作为多变量过程有效优化的有用工具的能力,包括纳米材料的合成。
期刊介绍:
Bioinorganic Chemistry and Applications is primarily devoted to original research papers, but also publishes review articles, editorials, and letter to the editor in the general field of bioinorganic chemistry and its applications. Its scope includes all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry. The journal welcomes papers relating to metalloenzymes and model compounds, metal-based drugs, biomaterials, biocatalysis and bioelectronics, metals in biology and medicine, metals toxicology and metals in the environment, metal interactions with biomolecules and spectroscopic applications.