微藻雨红球菌介导的合成纳米银的生物活性分子:抗氧化、抗菌、抗生物膜、溶血试验和抗癌。

IF 4.7 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bioinorganic Chemistry and Applications Pub Date : 2025-05-02 eCollection Date: 2025-01-01 DOI:10.1155/bca/8876478
Yoo-Na Jeon, Su-Ji Ryu, Anbazhagan Sathiyaseelan, Jong-Suep Baek
{"title":"微藻雨红球菌介导的合成纳米银的生物活性分子:抗氧化、抗菌、抗生物膜、溶血试验和抗癌。","authors":"Yoo-Na Jeon, Su-Ji Ryu, Anbazhagan Sathiyaseelan, Jong-Suep Baek","doi":"10.1155/bca/8876478","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive molecule-based synthesis of silver nanoparticles (AgNPs) offers an eco-friendly approach with high therapeutic potential; however, research in this area remains limited. This study introduces hot melt extrusion (HME) technology to enhance the extraction efficiency of bioactive compounds, including astaxanthin, from the microalgae <i>Haematococcus pluvialis</i> (Hp). AgNPs were synthesized using HME-processed Hp (H-Hp/AgNPs), confirmed by a color change and UV-vis absorption spectrum. The resulting H-Hp/AgNPs exhibited an average size of 129.7 ± 10.4 nm, a polydispersity index of 0.2 ± 0.3, and a zeta potential of -31.54 ± 0.2 mV, indicating high stability. The synthesized AgNPs demonstrated antibacterial activity by inhibiting the growth and biofilm formation of antibiotic-resistant bacteria. Cell viability assays revealed that normal cells maintained over 100% viability at most concentrations of H-Hp/AgNPs, while cancer cells exhibited significant cytotoxicity (34.1 ± 3.1%) at 250 μg/mL. Furthermore, H-Hp/AgNPs induced apoptosis in MDA-MB 231 cells, as evidenced by mitochondrial membrane potential loss, nuclear condensation, and apoptosis, confirmed through AO/EB, Rh123, and PI staining. Additionally, H-Hp/AgNPs showed no hemolytic activity at concentrations below 250 μg/mL, ensuring safety. In conclusion, this study highlights the potential of biosynthesized H-Hp/AgNPs as promising candidates with antioxidant, antibacterial, biocompatibility, and anticancer properties.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2025 ","pages":"8876478"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064320/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bioactive Molecules of Microalgae <i>Haematococcus pluvialis</i>-Mediated Synthesized Silver Nanoparticles: Antioxidant, Antimicrobial, Antibiofilm, Hemolysis Assay, and Anticancer.\",\"authors\":\"Yoo-Na Jeon, Su-Ji Ryu, Anbazhagan Sathiyaseelan, Jong-Suep Baek\",\"doi\":\"10.1155/bca/8876478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioactive molecule-based synthesis of silver nanoparticles (AgNPs) offers an eco-friendly approach with high therapeutic potential; however, research in this area remains limited. This study introduces hot melt extrusion (HME) technology to enhance the extraction efficiency of bioactive compounds, including astaxanthin, from the microalgae <i>Haematococcus pluvialis</i> (Hp). AgNPs were synthesized using HME-processed Hp (H-Hp/AgNPs), confirmed by a color change and UV-vis absorption spectrum. The resulting H-Hp/AgNPs exhibited an average size of 129.7 ± 10.4 nm, a polydispersity index of 0.2 ± 0.3, and a zeta potential of -31.54 ± 0.2 mV, indicating high stability. The synthesized AgNPs demonstrated antibacterial activity by inhibiting the growth and biofilm formation of antibiotic-resistant bacteria. Cell viability assays revealed that normal cells maintained over 100% viability at most concentrations of H-Hp/AgNPs, while cancer cells exhibited significant cytotoxicity (34.1 ± 3.1%) at 250 μg/mL. Furthermore, H-Hp/AgNPs induced apoptosis in MDA-MB 231 cells, as evidenced by mitochondrial membrane potential loss, nuclear condensation, and apoptosis, confirmed through AO/EB, Rh123, and PI staining. Additionally, H-Hp/AgNPs showed no hemolytic activity at concentrations below 250 μg/mL, ensuring safety. In conclusion, this study highlights the potential of biosynthesized H-Hp/AgNPs as promising candidates with antioxidant, antibacterial, biocompatibility, and anticancer properties.</p>\",\"PeriodicalId\":8914,\"journal\":{\"name\":\"Bioinorganic Chemistry and Applications\",\"volume\":\"2025 \",\"pages\":\"8876478\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064320/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinorganic Chemistry and Applications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/bca/8876478\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinorganic Chemistry and Applications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/bca/8876478","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于生物活性分子的银纳米颗粒合成(AgNPs)提供了一种具有高治疗潜力的环保方法;然而,这方面的研究仍然有限。本研究采用热熔挤压(HME)技术,提高了从雨红球菌(Hp)微藻中提取虾青素等生物活性物质的效率。用hme处理的Hp (H-Hp/AgNPs)合成AgNPs,并通过颜色变化和紫外可见吸收光谱进行验证。H-Hp/AgNPs的平均尺寸为129.7±10.4 nm,多分散性指数为0.2±0.3,zeta电位为-31.54±0.2 mV,具有较高的稳定性。合成的AgNPs通过抑制耐药菌的生长和生物膜的形成显示出抗菌活性。细胞活力测定显示,在大多数浓度的H-Hp/AgNPs下,正常细胞的活力保持在100%以上,而在250 μg/mL浓度下,癌细胞表现出明显的细胞毒性(34.1±3.1%)。此外,通过AO/EB、Rh123和PI染色证实,H-Hp/AgNPs诱导MDA-MB 231细胞凋亡,表现为线粒体膜电位损失、核凝聚和细胞凋亡。此外,在浓度低于250 μg/mL时,H-Hp/AgNPs没有溶血活性,确保了安全性。总之,本研究强调了生物合成H-Hp/AgNPs具有抗氧化、抗菌、生物相容性和抗癌特性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioactive Molecules of Microalgae Haematococcus pluvialis-Mediated Synthesized Silver Nanoparticles: Antioxidant, Antimicrobial, Antibiofilm, Hemolysis Assay, and Anticancer.

Bioactive molecule-based synthesis of silver nanoparticles (AgNPs) offers an eco-friendly approach with high therapeutic potential; however, research in this area remains limited. This study introduces hot melt extrusion (HME) technology to enhance the extraction efficiency of bioactive compounds, including astaxanthin, from the microalgae Haematococcus pluvialis (Hp). AgNPs were synthesized using HME-processed Hp (H-Hp/AgNPs), confirmed by a color change and UV-vis absorption spectrum. The resulting H-Hp/AgNPs exhibited an average size of 129.7 ± 10.4 nm, a polydispersity index of 0.2 ± 0.3, and a zeta potential of -31.54 ± 0.2 mV, indicating high stability. The synthesized AgNPs demonstrated antibacterial activity by inhibiting the growth and biofilm formation of antibiotic-resistant bacteria. Cell viability assays revealed that normal cells maintained over 100% viability at most concentrations of H-Hp/AgNPs, while cancer cells exhibited significant cytotoxicity (34.1 ± 3.1%) at 250 μg/mL. Furthermore, H-Hp/AgNPs induced apoptosis in MDA-MB 231 cells, as evidenced by mitochondrial membrane potential loss, nuclear condensation, and apoptosis, confirmed through AO/EB, Rh123, and PI staining. Additionally, H-Hp/AgNPs showed no hemolytic activity at concentrations below 250 μg/mL, ensuring safety. In conclusion, this study highlights the potential of biosynthesized H-Hp/AgNPs as promising candidates with antioxidant, antibacterial, biocompatibility, and anticancer properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinorganic Chemistry and Applications
Bioinorganic Chemistry and Applications 化学-生化与分子生物学
CiteScore
7.00
自引率
5.30%
发文量
105
审稿时长
>12 weeks
期刊介绍: Bioinorganic Chemistry and Applications is primarily devoted to original research papers, but also publishes review articles, editorials, and letter to the editor in the general field of bioinorganic chemistry and its applications. Its scope includes all aspects of bioinorganic chemistry, including bioorganometallic chemistry and applied bioinorganic chemistry. The journal welcomes papers relating to metalloenzymes and model compounds, metal-based drugs, biomaterials, biocatalysis and bioelectronics, metals in biology and medicine, metals toxicology and metals in the environment, metal interactions with biomolecules and spectroscopic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信