{"title":"Navigating challenges in the management of Dactylopius opuntiae (Cockerell): Transitioning from ’introduction biological control’ to a preemptive strategy of artificial seeding of a natural enemy","authors":"Zvi Mendel , Alexei Protasov , Omer Golan , Daniel Bensimon , Oren Kolodny , Pompeo Suma","doi":"10.1016/j.biocontrol.2024.105582","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105582","url":null,"abstract":"<div><p>The invasion of false carmine cochineal <em>Dactylopius opuntiae</em> (Cockerell) (Hemiptera; Dactylopiidae) in the Mediterranean region presents a serious threat to cactus pear cultivation. The cochineal was first identified in Israel in 2013, and it soon became clear that biological control is the only long-term solution to protect the cactus pear <em>Opuntia ficus-indica</em>. Releases of the introduced predatory beetle <em>Hyperaspis trifurcata</em> Schaeffer (Coleoptera; Coccinellidae) began in 2016, demonstrating high efficacy and leading to a decline in cochineal populations and plant survival. While <em>H. trifurcata</em> can autonomously reach new cochineal hotspots, it often arrives too late to prevent substantial damage to cactus pear. Human intervention is therefore necessary to expedite the predator’s establishment in new infested sites. To facilitate the spread of the beetle, we consider two approaches: transferring beetle seeding stocks from northern locations through a volunteer network organized by the research team, and applying the ’predator – prey dual introduction’ concept to preemptively mitigate new hotspots expected to emerge as the cochineal spreads southward via winds or birds. These activities have led to a major decrease in the rate of spread of the cochineal population in the East Mediterranean, and in the damage that it inflicts to cactus pear hedgerows. Implementing a similar approach in North Africa can prevent or slow the spread of the cochineal to the northern coast of the central Mediterranean and avoid the heavy damage experienced in Morocco.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105582"},"PeriodicalIF":3.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001476/pdfft?md5=365684c93d6741884de11448798000e1&pid=1-s2.0-S1049964424001476-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ControlPub Date : 2024-07-05DOI: 10.1016/j.biocontrol.2024.105561
Yanxuan Lu , Wei Song , Jin Wang , Yi Cao , Xue Han , Chunli Xu , Feng Wang , Beibei Ge
{"title":"Biocontrol of Botrytis cinerea by Streptomyces noursei C27 and preliminary identification of antimicrobial metabolites","authors":"Yanxuan Lu , Wei Song , Jin Wang , Yi Cao , Xue Han , Chunli Xu , Feng Wang , Beibei Ge","doi":"10.1016/j.biocontrol.2024.105561","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105561","url":null,"abstract":"<div><p>A wide variety of soluble bioactive secondary metabolites and volatile organic compounds are produced by species of <em>Streptomyces</em>, making them potential candidates for controlling phytopathogenic microorganisms. In the present study, <em>Streptomyces noursei</em> C27, isolated from soil, was found to exhibit broad spectrum inhibitory activity against several phytopathogenic fungi. Furthermore, volatile organic compounds (VOCs) produced by <em>S. noursei</em> C27 exhibited total inhibition of <em>Botrytis cinerea</em>. An analysis of the complete genome sequence confirmed the identification of C27 as <em>Streptomyces noursei</em>. Liquid chromatography-tandem mass spectrometry analysis was used to characterize antimicrobial metabolites present in the fermentation broth of <em>Streptomyces</em> C27, that were identified as gougerotin, natamycin, nystatin, and anisomycin. <em>Streptomyces</em> C27 was shown to control gray mold on grape leaves and fruit <em>in vitro</em>, inhibiting infections by 72.5% and 71.9%, respectively. Gas chromatography-mass spectrometry analysis revealed that thirty alkenes, alcohols, esters, and alkanes were among the VOCs secreted by <em>Streptomyces</em> C27 and contributed to the inhibition of <em>B. cinerea</em> growth and development in inoculated grape leaves and fruit. The biocontrol efficacy of a wettable powder formulation of <em>Streptomyces</em> C27 against gray mold was tested on tomato seedlings in pot experiments and greenhouse experiment. Results indicated 61.86% and 67.25% control in the pot and field tests, respectively. In summary, <em>Streptomyces noursei</em> C27 has excellent potential to be a commercial biocontrol agent of plant diseases caused by pathogenic fungi, especially gray mold infections of vegetables and fruits caused by <em>B. cinerea</em>.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105561"},"PeriodicalIF":3.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001269/pdfft?md5=14813ef81a4210b95161b862e88e9cb0&pid=1-s2.0-S1049964424001269-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ControlPub Date : 2024-07-05DOI: 10.1016/j.biocontrol.2024.105579
Mengjiao Sun , Chaoqiong Liang , Xiao Fu , Guixiang Liu , Yanru Zhong , Ting Wang , Guanghui Tang , Peiqin Li
{"title":"Nematocidal activity and biocontrol efficacy of endophytic Bacillus velezensis Pt-RP9 from Pinus tabuliformis against pine wilt disease caused by Bursaphelenchus xylophilus","authors":"Mengjiao Sun , Chaoqiong Liang , Xiao Fu , Guixiang Liu , Yanru Zhong , Ting Wang , Guanghui Tang , Peiqin Li","doi":"10.1016/j.biocontrol.2024.105579","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105579","url":null,"abstract":"<div><p>Pine wilt disease (PWD) is a globally significant quarantine forest disease caused by <em>Bursaphelenchus xylophilus</em> (<em>PWN</em>), resulting in substantial ecological and economic losses. Traditional nematode management practices are neither cost-effective nor environmentally friendly, prompting the exploration of biocontrol as a promising alternative for managing this devastating forest disease. Obtaining novel and specific biocontrol agents is extremely crucial for the effective and precise control of PWD. In the present study, a total of 136 endophytic isolates were obtained from the roots, stems and needles of <em>Pinus tabuliformis</em> in the Qinling Mountains of China<em>,</em> which were then subjected to nematocidal activity assay against <em>PWN in vitro</em>. Nine endophytic bacterial isolates exhibited exceptionally strong nematocidal capacity, with a corrected mortality rate exceeding 90 %, which were then identified as the genus of <em>Bacillus</em> through morphological features, endospore staining, and 16S rDNA sequencing, with one strain as <em>B. mycoides</em>, two as <em>B. cereus</em>, and six as <em>B. velezensis</em>. Additionally, the inhibition effects of the three <em>Bacillus</em> species on the reproduction of <em>PWN in vitro</em> was assessed using an original detection model, with <em>B. velezensis</em> Pt-RP9 identified as the most promising strain. Subsequently, the biocontrol efficacy of <em>B. velezensis</em> Pt-RP9 against PWD was evaluated in greenhouse experiments. Pt-RP9 demonstrated significant biocontrol effectiveness against PWD, with control efficiencies ranging from 31.25 % to 68.89 % across all treatments, particularly showing improved efficacy when pine seedlings were pre-treated with Pt-RP9 before <em>PWN</em> inoculation. Furthermore, pine seedlings treated with Pt-RP9 exhibited significantly reduced <em>PWN</em> density and lipid peroxidation levels in cell membranes compared to the control groups, along with increased activities of peroxidase, catalase, and polyphenol oxidase. To our knowledge, this study is the first to showcase the nematocidal activity of endophytes from <em>P. tabuliformis</em> against <em>PWN</em> and their biocontrol efficacy against PWD, marking a significant advancement in the field. The findings highlight the potential of <em>B. velezensis</em> Pt-RP9 as a crucial biological control agent against PWD, presenting a novel and sustainable disease management approach for pine forests.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105579"},"PeriodicalIF":3.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001440/pdfft?md5=64c58ee3d21a84010381f65827fc423b&pid=1-s2.0-S1049964424001440-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ControlPub Date : 2024-07-04DOI: 10.1016/j.biocontrol.2024.105581
Juliana Bleckwedel, María José Martínez, María Paula Claps, Vicente De Lisi, Victoria González, Leonardo Daniel Ploper, Sebastian Reznikov
{"title":"Biological control of soybean charcoal rot by native Trichoderma koningiopsis in Tucumán, Argentina","authors":"Juliana Bleckwedel, María José Martínez, María Paula Claps, Vicente De Lisi, Victoria González, Leonardo Daniel Ploper, Sebastian Reznikov","doi":"10.1016/j.biocontrol.2024.105581","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105581","url":null,"abstract":"<div><p><em>Macrophomina phaseolina</em> (Tassi) Goid. (Mp) is the causal agent of charcoal rot in soybean, an economically serious and potentially destructive disease. Chemical control sometimes has limited effects on disease severity and may pose a threat to the environment, so the use of <em>Trichoderma</em> as a biological product could be a feasible alternative for charcoal rot management. The objective of this research was to isolate and characterize native <em>Trichoderma</em> spp. from northwestern Argentina and study their antagonistic effect against Mp in soybean. Isolations were performed from soil samples followed by cultural and microbiological characterization of the <em>Trichoderma</em> spp. isolates collected. Then, the antagonist effect against Mp was studied <em>in vitro</em>, under greenhouse conditions, and finally under field conditions with pathogen artificial inoculations during two soybean crop seasons (2020 and 2021). The results demonstrated that isolate Tr009 had a biocontrol effect against Mp in soybean. This control was evidenced <em>in vitro</em> and under controlled and field conditions with high emergency of plants compared to the Mp inoculated control. Under field conditions, treatments that included <em>Trichoderma</em> presented lower disease severity, colony-forming unit index and disease severity index values than the pathogen inoculated control. Moreover, Tr009 improved weight and length of soybean plants under greenhouse conditions. Isolate Tr009 was identified as <em>Trichoderma koningiopsis</em> by molecular methods<em>.</em> These results indicate that this biological tool can be used against Mp and thus favor a sustainable management of soybean charcoal rot.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105581"},"PeriodicalIF":3.7,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001464/pdfft?md5=56f39613daa016409840c87ca4cc4c06&pid=1-s2.0-S1049964424001464-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ControlPub Date : 2024-07-03DOI: 10.1016/j.biocontrol.2024.105566
Quentin Paynter
{"title":"Literature reviews narrow down where to search for agents for Urena lobata and Solanum torvum: Pantropical weeds with poorly defined native ranges","authors":"Quentin Paynter","doi":"10.1016/j.biocontrol.2024.105566","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105566","url":null,"abstract":"<div><p>It has long been recognized that surveys for candidate weed biocontrol agents should focus on the center of origin of the target weed species. Consequently, if the origin of a weed species is uncertain it can pose problems for biocontrol practitioners. This study focuses on <em>Urena lobata</em> and <em>Solanum torvum</em>, which are pantropical species that have become major introduced pasture weeds in Vanuatu where a biocontrol program to mitigate their impacts commenced in 2018. It was initially unclear where to survey for agents for both weed species due to conflicting information from a range of botanical resources regarding the original native ranges of these plants. For <em>U. lobata</em> it was not even obvious on what continents survey work should be conducted. Published literature and online databases were searched for host records of arthropods and plant pathogens associated with these plants to identify regions with the highest diversity of potentially host-specific natural enemies. This was coupled with very simple climate matching. Southeast Asia was identified as the most promising region to survey <em>U. lobata</em> and Central America and the Antilles the most promising regions to survey <em>S. torvum</em>. This case study indicates that there can be enough information online to enable internet sleuthing to significantly assist with targeting the survey stage of biocontrol programs against novel weed biocontrol targets of uncertain geographic origin.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105566"},"PeriodicalIF":3.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001312/pdfft?md5=a643021f9530f8184daa4f6bffc21f15&pid=1-s2.0-S1049964424001312-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effects of cultivar mixtures on insect pest and natural enemy abundance, diseases, and yield in tropical soybean cropping system","authors":"Sokha Kheam , Diana Rubene , Dimitrije Markovic , Saveng Ith , On Norong Uk , Soth Soung , Velemir Ninkovic","doi":"10.1016/j.biocontrol.2024.105571","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105571","url":null,"abstract":"<div><p>Increasing genotypic crop diversity via cultivar mixtures is a promising sustainable approach to control insect pests and diseases, thereby improving yield. The effects of genotypic diversity have not been studied for many crops. We investigated the effects of cultivar mixtures in a tropical soybean (<em>Glycine</em> max L<em>.</em> Merrill) cropping system on i) insect pest abundance, ii) natural enemy abundance, iii) diseases, and iv) yield. In the field trial, three soybean cultivars were used, two commercial and one traditional, with a randomized complete block design. Significant differences among cultivars and some mixtures were found for certain insect pest abundance (whitefly and brown bean bug), but no consistent mixture effects were observed. Significant increases in natural enemies (predatory ant, lady beetle, parasitoid wasp, and dragonfly) were detected in some cultivar mixtures, compared to single cultivars. Higher genetic diversity in cultivar mixtures increased the abundance of certain natural enemies at specific plant stages. The cultivar mixtures did not alter disease symptoms or yield. These results were obtained during a season with very low overall pest pressure, and the effects of cultivar mixtures might be altered at higher pest pressure, which should be further investigated. This study highlights trade-offs in cultivar selection when jointly considering pest and disease abundance and yield, as no single cultivar (or mixture) performed better in all observed aspects. Our study supports the hypothesis that increasing cultivar mixtures can promote the abundance of certain natural enemies, suggesting the potential of cultivar mixture effects for biological control and sustainable agricultural management.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105571"},"PeriodicalIF":3.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001361/pdfft?md5=81da4c140fd931fb599458f84292a6ff&pid=1-s2.0-S1049964424001361-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ControlPub Date : 2024-07-02DOI: 10.1016/j.biocontrol.2024.105572
Sandra Menéndez-Cañamares , Alberto Blázquez , Irene Albertos , Jorge Poveda , Alexandra Díez-Méndez
{"title":"Probiotic Bacillus subtilis SB8 and edible coatings for sustainable fungal disease management in strawberry","authors":"Sandra Menéndez-Cañamares , Alberto Blázquez , Irene Albertos , Jorge Poveda , Alexandra Díez-Méndez","doi":"10.1016/j.biocontrol.2024.105572","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105572","url":null,"abstract":"<div><p>Agriculture faces the critical challenge of providing safe food while reducing post-harvest phytopathogens losses, exacerbated by climate change. Berries, prized for their taste and nutrition, confront economic hurdles due to fungal diseases, notably strawberries. Exploring ecological alternatives, like biopesticides with probiotic properties in synergic with edible coatings, has emerged as a novel strategy to address this challenge. Our aim was to isolate bacteria capable of serving dual roles: combating fungal diseases while also enhancing food safety for consumers potentially applicable in conjunction with edible coatings. Strawberries, blueberries, and raspberries were surface disinfected, obtaining 19 isolates on MRS medium. Among these, we predominantly isolated <em>Bacillus</em> species, along with lactic acid bacteria (LAB) and potential pathogens. Selected bacterial strains were tested against three major phytopathogens: <em>Botrytis cinerea</em>, <em>Alternaria alternata</em>, and <em>Colletotrichum acutatum</em>. <em>Bacillus subtilis</em> SB8, <em>B</em>. <em>tequilensis</em> SB4.3.1, and <em>B</em>. <em>cabrialesii</em> SB4.3 showed promising results. <em>B</em>. <em>subtilis</em> was particularly notable for its antagonistic effects and it’s recognized as Generally Recognized As Safe (GRAS). An <em>in vivo</em> assay using the SB8 strain, combined with an alginate-based edible coating, demonstrated a reduction in <em>B</em>. <em>cinerea</em> infection. Sequencing the SB8 genome (approximately 4.0 Mb) revealed genes responsible for antimicrobial compound production and probiotic traits. Our study highlights the potential of these strategies to enhance the safety and sustainability of strawberry production, providing a novel approach to combat fungal diseases and ensure the safety of these fruits.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105572"},"PeriodicalIF":3.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001373/pdfft?md5=a74ea52d008cf26e31ff86ec61b871dd&pid=1-s2.0-S1049964424001373-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ControlPub Date : 2024-07-02DOI: 10.1016/j.biocontrol.2024.105570
Mateus P. dos Santos , Eloito C. Mates , Benício de M. Santos Neto , Ana C.P. Cardoso , Suzany A. Leite , Aldenise A. Moreira , Érika V.S. Albuquerque , Daniell R.R. Fernandes , Frédérique Hilliou , Geraldo A. Carvalho , Maria A. Castellani
{"title":"Morphometric variation and fluctuating asymmetry in populations of Closterocerus coffeellae (Ihering) (Hymenoptera: Eulophidae) in different management and landscape of coffee agroecosystems","authors":"Mateus P. dos Santos , Eloito C. Mates , Benício de M. Santos Neto , Ana C.P. Cardoso , Suzany A. Leite , Aldenise A. Moreira , Érika V.S. Albuquerque , Daniell R.R. Fernandes , Frédérique Hilliou , Geraldo A. Carvalho , Maria A. Castellani","doi":"10.1016/j.biocontrol.2024.105570","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105570","url":null,"abstract":"<div><p><em>Closterocerus coffeellae</em> (Hymenoptera: Eulophidae) is a parasitoid of the coffee leaf miner occurring in coffee farms with high selection pressure caused by pesticides and different landscape patterns on the surrounding crops. This work aims to detect morphometric variations and levels of Fluctuating Asymmetry (FA) in the wings of <em>C. coffeellae</em> in coffee farms with a history of insecticide use and different landscape composition in the Planalto region, Bahia, Brazil. Parasitoids originated from six coffee farms in this region. We prepared microscopy slides of the right wings of 30 <em>C. coffeellae</em> females from each population. We determined variations in wing size and shape by geometric morphometry analysis, adding 1 landmark and 9 semi-anatomical landmarks to the wings. The landscape metrics (3 km radius) and levels of spatial dependence for size and AF were calculated using geostatistical analysis. Higher forest cover and edge density in coffee plantations lead to an increase in the wing size of <em>C. coffeellae</em> and reduced wing FA levels. Diversity of the surrounding agricultural land cover in coffee farms and pesticide use reduces wing size and increases levels of FA in coffee farms. The centroid size exhibited strong and moderate aggregation levels across coffee farms. The conservation of <em>C. coffeellae</em> is recommended since the species can be used as a bioproduct against the coffee leaf miner, and as a biocontrol solution for coffee farms. Furthermore, adopting conservative practices of natural vegetation surrounding coffee farms is essential for the parasitoids. It must be included in the coffee leaf miner management, mainly in farms with higher agricultural cropland diversity on surrounding coffee farms and with higher pesticide use.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105570"},"PeriodicalIF":3.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S104996442400135X/pdfft?md5=89fcde2cbc192e2182a05098302d192c&pid=1-s2.0-S104996442400135X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ControlPub Date : 2024-06-29DOI: 10.1016/j.biocontrol.2024.105567
Joseph Milan , Julia Rushton , Natalie M. West , Aaron S. Weed , Mark Schwarzländer
{"title":"Application of a Standardized Impact Monitoring Protocol (SIMP) to assess biological weed control projects in the State of Idaho, USA","authors":"Joseph Milan , Julia Rushton , Natalie M. West , Aaron S. Weed , Mark Schwarzländer","doi":"10.1016/j.biocontrol.2024.105567","DOIUrl":"10.1016/j.biocontrol.2024.105567","url":null,"abstract":"<div><p>In the USA, the lack of systematic post-release assessments of weed biological control projects demonstrating quantitative effects of biological control agents on target weed densities, population biology, and/or vegetation responses remain a concern. While there are numerous quantitative assessments, overall conclusions are limited in scope by the spatial scale covered, duration of study, potentially confounding factors, or weed parameters measured. The United States Department of Agriculture’s Animal Plant Health Inspection Service is the regulatory agency responsible for biological control agent releases. USDA APHIS requires post-release impact monitoring of target weed populations as part of release permits issued for new biological control agents. However, large scale, long-term impact assessments are rarely conducted for a variety of reasons. To address this problem, biocontrol practitioners developed a standardized impact monitoring protocol (SIMP) for the State of Idaho in 2007. The intent was to collect ecological data which are sufficiently robust for quantitative analysis, while minimizing time spent in the field to make data collection appealing to citizen scientists and land managers. SIMP has since been implemented for ten weed biocontrol systems, with more than fifteen years of monitoring data for some systems. SIMP data are collected along permanent transects and include weed density and size parameters, categorical vegetation community and biocontrol agent abundance data. Data are repeated measures, which are well suited for dynamic population modeling and can be coupled with environmental factors (e.g., climate or soil data) to analyze how processes like climate (and climate change) can drive variation in weed biocontrol agent interactions. SIMP data can be combined with detailed weed, nontarget plant and/or biocontrol agent surveys to add analytical data. Finally, SIMP has also been implemented for two weeds for which biological control agents have not yet been introduced to provide weed and community vegetation data prior to releases.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105567"},"PeriodicalIF":3.7,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001324/pdfft?md5=20ad2fdb49d225ab2e7fe88cf7708221&pid=1-s2.0-S1049964424001324-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biological ControlPub Date : 2024-06-28DOI: 10.1016/j.biocontrol.2024.105568
Gabriele Rondoni , Elena Chierici , Elissa Daher , Franco Famiani , Jacques Brodeur , Eric Conti
{"title":"How exposure to a neonicotinoid pesticide affects innate and learned close-range foraging behaviour of a classical biological control agent","authors":"Gabriele Rondoni , Elena Chierici , Elissa Daher , Franco Famiani , Jacques Brodeur , Eric Conti","doi":"10.1016/j.biocontrol.2024.105568","DOIUrl":"https://doi.org/10.1016/j.biocontrol.2024.105568","url":null,"abstract":"<div><p>While foraging in agricultural habitats, natural enemies, such as egg parasitoids, may encounter insecticide residues, which, if not lethal, can alter host location behaviour and learning capacity. Such interference can reduce the potential of biological control agents, especially exotic species which are released in small numbers in a new environment and first need to establish and build up their populations. Several studies have investigated the lethal effects of pesticides on parasitoids, but less information is available about non-lethal consequences, and no information is available on the potential effect on associative learning in egg parasitoids. The egg parasitoid <em>Trissolcus japonicus</em> (Ashmed) (Hymenoptera: Scelionidae) is a biological control agent of the invasive brown marmorated stink bug, <em>Halyomorpha halys</em> (Stål) (Hemiptera: Pentatomidae). We hypothesised that a low concentration (causing 20 % parasitoid mortality) of a commonly used neonicotinoid insecticide (acetamiprid) alters the behaviour and learning capacity of <em>T. japonicus</em> to exploit the chemical traces left by reproductive females of either the main host, <em>H. halys</em>, or of an alternative host, <em>Arma custos</em> (F.) (Hemiptera: Pentatomidae). In open arena bioassays, parasitoid females responded positively to traces left by both stink bug species. Following oviposition experience and encounter with host traces (associative learning), <em>T. japonicus</em> reduced foraging time. Parasitoids previously exposed to neonicotinoid showed changes in foraging behaviour, with increased residence time spent in the host-contaminated area and altered kinetics of the walking behaviour. Neonicotinoid exposition did not affect the learning ability of parasitoid females 1 h after oviposition experience but prolonged the memory retention. The insecticide effects on female parasitoid behaviour may affect its reproductive ability and this should be considered when attempting its establishment in the introduction areas.</p></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"196 ","pages":"Article 105568"},"PeriodicalIF":3.7,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1049964424001336/pdfft?md5=1c1c33026acc77826184c9895669ae64&pid=1-s2.0-S1049964424001336-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}