Biologia futura最新文献

筛选
英文 中文
Changes in polyamine contents during Fusarium graminearum and Fusarium verticillioides inoculation in maize seedlings with or without seed-priming. 玉米幼苗接种禾本科和黄萎病镰刀菌前后多胺含量的变化
IF 2.1 4区 生物学
Biologia futura Pub Date : 2023-06-01 DOI: 10.1007/s42977-023-00162-7
Blanka Kovács, Anett Kovács, Magda Pál, Tamás Spitkó, Csaba L Marton, Csaba Szőke
{"title":"Changes in polyamine contents during Fusarium graminearum and Fusarium verticillioides inoculation in maize seedlings with or without seed-priming.","authors":"Blanka Kovács,&nbsp;Anett Kovács,&nbsp;Magda Pál,&nbsp;Tamás Spitkó,&nbsp;Csaba L Marton,&nbsp;Csaba Szőke","doi":"10.1007/s42977-023-00162-7","DOIUrl":"https://doi.org/10.1007/s42977-023-00162-7","url":null,"abstract":"<p><p>Maize (Zea mays L.) is the most produced field crop all over the world. One of its most critical diseases that results in economic loss is ear rot caused by various Fusarium species. Previous researches have shown that polyamines, found in all living cells, play crucial role in biotic stress responses. At the same time, biosynthesis of polyamines is of paramount importance not only for plants but also for their pathogens to promote stress tolerance and pathogenicity. In our study, we investigated the polyamine content changes induced in the seedlings of two maize genotypes of different susceptibility by isolates of Fusarium verticillioides and Fusarium graminearum, two Fusarium species of different lifestyles. Apart from that, it was examined how infection efficiency and changes in polyamine contents were modified by salicylic acid or putrescine seed soaking pre-treatments. Our observations confirmed that initial and stress-induced changes in the polyamine contents are not directly related to tolerance in either coleoptile or radicle. However, the two pathogens with different lifestyles induced remarkably distinct changes in the polyamine contents. The effect of the seed soaking pre-treatments depended on the pathogens and plant resistance as well: both salicylic acid and putrescine seed soaking had positive results against F. verticillioides, while in the case of infection with F. graminearum, seed soaking with distilled water alone affected biomass parameters positively in the tolerant genotype.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The importance of pseudouridylation: human disorders related to the fifth nucleoside. 假尿嘧啶化的重要性:与第五核苷有关的人类疾病。
IF 2.1 4区 生物学
Biologia futura Pub Date : 2023-06-01 DOI: 10.1007/s42977-023-00158-3
Tália Magdolna Keszthelyi, Kálmán Tory
{"title":"The importance of pseudouridylation: human disorders related to the fifth nucleoside.","authors":"Tália Magdolna Keszthelyi,&nbsp;Kálmán Tory","doi":"10.1007/s42977-023-00158-3","DOIUrl":"https://doi.org/10.1007/s42977-023-00158-3","url":null,"abstract":"<p><p>Pseudouridylation is one of the most abundant RNA modifications in eukaryotes, making pseudouridine known as the \"fifth nucleoside.\" This highly conserved alteration affects all non-coding and coding RNA types. Its role and importance have been increasingly widely researched, especially considering that its absence or damage leads to serious hereditary diseases. Here, we summarize the human genetic disorders described to date that are related to the participants of the pseudouridylation process.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9857593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Induced defense responses in cultivated and wild chickpea genotypes against Helicoverpa armigera infestation. 栽培和野生鹰嘴豆基因型对棉铃虫侵染的诱导防御反应。
IF 2.1 4区 生物学
Biologia futura Pub Date : 2023-06-01 DOI: 10.1007/s42977-022-00151-2
Harpreet Singh, Satvir Kaur Grewal, Ravinder Singh, Rachana D Bhardwaj
{"title":"Induced defense responses in cultivated and wild chickpea genotypes against Helicoverpa armigera infestation.","authors":"Harpreet Singh,&nbsp;Satvir Kaur Grewal,&nbsp;Ravinder Singh,&nbsp;Rachana D Bhardwaj","doi":"10.1007/s42977-022-00151-2","DOIUrl":"https://doi.org/10.1007/s42977-022-00151-2","url":null,"abstract":"<p><p>Five desi (GL 12,021, GL 29,095, GL 29,078, H11 22 and CSJ 515) and three wild (GLW 22, GLW 58 and GLW 187) chickpea cultivars showed induced defense response against Helicoverpa armigera infestation as a result of enhanced activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, polyphenol oxidase, phenylalanine ammonia lyase, tyrosine ammonia lyase in leaves, pod walls and seeds. Catalase activity increased in leaves of GL 12,021, H11 22, GL 29,095, CSJ 515, GLW 22, and GL 29,078 after infestation compared to resistant check; catalase and peroxidase activities in GL 29,095 and GL 29,078; ascorbate peroxidase and glutathione reductase activities in leaves of GLW 58. The increased activity of superoxide dismutase in pod wall of H1122; catalase in pod wall of 29,078, GL 29,095 and GL 22; ascorbate peroxidase and glutathione reductase in pod wall of GLW 58; phenylalanine ammonia lyase and tyrosine ammonia lyase in pod wall of GLW 187, H11 22, GL 20,978, GLW 22 and GLW 58 after infestation as compared to resistant check might be responsible for mitigating infestation induced oxidative stress. MDA content decreased in leaves, pod wall and seeds of GLW 187 and GL 12,021 after infestation. Lower percent pod damage (9.58-12.44%) in GL 12,021, GLW 187, GL 29,095, H11 22, GL 29,078, GLW 22 and GLW 58 as compared to resistant (16.18%) and susceptible (21.50) checks might be attributed to differential induced defense mechanism in them. The identified desi and wild genotypes might be used in breeding program to develop cultivars with improved resistance to herbivore.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9826769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs. 一个位点,几个功能性rna -负责microRNAs序列变异性机制的新兴角色。
IF 2.1 4区 生物学
Biologia futura Pub Date : 2023-06-01 DOI: 10.1007/s42977-023-00154-7
Tamás I Orbán
{"title":"One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs.","authors":"Tamás I Orbán","doi":"10.1007/s42977-023-00154-7","DOIUrl":"https://doi.org/10.1007/s42977-023-00154-7","url":null,"abstract":"<p><p>With the development of modern molecular genetics, the original \"one gene-one enzyme\" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited \"RNA world\", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9829307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The role of post-transcriptional modifications during development. 转录后修饰在发育过程中的作用。
IF 2.1 4区 生物学
Biologia futura Pub Date : 2023-06-01 DOI: 10.1007/s42977-022-00142-3
Renáta Hamar, Máté Varga
{"title":"The role of post-transcriptional modifications during development.","authors":"Renáta Hamar,&nbsp;Máté Varga","doi":"10.1007/s42977-022-00142-3","DOIUrl":"https://doi.org/10.1007/s42977-022-00142-3","url":null,"abstract":"<p><p>While the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the \"writer\", \"reader\" and \"eraser\" proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9862588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovation in the 21st century: following the footsteps of Katalin Karikó. 21世纪的创新:追随卡塔林Karikó。
IF 2.1 4区 生物学
Biologia futura Pub Date : 2023-06-01 DOI: 10.1007/s42977-023-00161-8
Csaba Deák, Norbert Pardi, Ádám Miklósi
{"title":"Innovation in the 21st century: following the footsteps of Katalin Karikó.","authors":"Csaba Deák,&nbsp;Norbert Pardi,&nbsp;Ádám Miklósi","doi":"10.1007/s42977-023-00161-8","DOIUrl":"https://doi.org/10.1007/s42977-023-00161-8","url":null,"abstract":"<p><p>Innovation is a critical component of human society, setting us apart from other animals. We possess a unique capacity to design and produce new things through cultivating a culture that values and encourages innovation. One remarkable instance of innovation in the field of biology and medicine is the mRNA vaccine platform developed by Katalin Karikó and her colleagues. In this article, we delve into the evolution of mRNA-based therapy, beginning with animal models and concluding with the first clinical trials. The history of mRNA research began with the identification of its role in protein synthesis, leading to the development of mRNA vaccine technology. Karikó's pivotal innovation was discovering the need to integrate modified nucleosides into the mRNA, decreasing its recognition by the immune system. Her story offers valuable lessons, including the importance of market demand as a booster effect, the role of emerging technologies, the significance of universities and academic institutions in fostering innovation, the role of perseverance and faith, and the role of chance.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9885191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolutionary and functional divergence of the Atg8 autophagy protein superfamily. Atg8自噬蛋白超家族的进化和功能分化。
IF 2.1 4区 生物学
Biologia futura Pub Date : 2022-12-01 DOI: 10.1007/s42977-022-00123-6
Virginia B Varga, Fanni Keresztes, Tímea Sigmond, Tibor Vellai, Tibor Kovács
{"title":"The evolutionary and functional divergence of the Atg8 autophagy protein superfamily.","authors":"Virginia B Varga,&nbsp;Fanni Keresztes,&nbsp;Tímea Sigmond,&nbsp;Tibor Vellai,&nbsp;Tibor Kovács","doi":"10.1007/s42977-022-00123-6","DOIUrl":"https://doi.org/10.1007/s42977-022-00123-6","url":null,"abstract":"<p><p>Autophagy is a highly conserved self-degradation process of eukaryotic cells which is required for the effective elimination of damaged and unnecessary cytosolic constituents. Defects in the process can cause the intracellular accumulation of such damages, thereby leading to the senescence and subsequent loss of the affected cell. Defective autophagy hence is implicated in the development of various degenerative processes, including cancer, neurodegenerative diseases, diabetes, tissue atrophy and fibrosis, and immune deficiency, as well as in accelerated aging. The autophagic process is mediated by numerous autophagy-related (ATG) proteins, among which the ATG8/LC3/GABARAP (Microtubule-associated protein 1A/1B-light chain 3/Gammaaminobutyric acid receptor-associated protein) superfamily has a pivotal role in the formation and maturation of autophagosome, a key (macro) autophagic structure (the autophagosome sequesters parts of the cytoplasm which are destined for breakdown). While in the unicellular yeast there is only a single ATG8 protein, metazoan systems usually contain more ATG8 paralogs. ATG8 paralogs generally display tissue-specific expression patterns and their functions are not strictly restricted to autophagy. For example, GABARAP proteins also play a role in intracellular vesicle transport, and, in addition to autophagosome formation, ATG8 also functions in selective autophagy. In this review, we summarize the functional diversity of ATG8/LC3/GABARAP proteins, using tractable genetic models applied in autophagy research.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10616599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The genome loading model for the origin and maintenance of sex in eukaryotes. 真核生物性别起源和维持的基因组加载模型。
IF 2.1 4区 生物学
Biologia futura Pub Date : 2022-12-01 DOI: 10.1007/s42977-022-00148-x
András Tóth, Lóránt Székvölgyi, Tibor Vellai
{"title":"The genome loading model for the origin and maintenance of sex in eukaryotes.","authors":"András Tóth,&nbsp;Lóránt Székvölgyi,&nbsp;Tibor Vellai","doi":"10.1007/s42977-022-00148-x","DOIUrl":"https://doi.org/10.1007/s42977-022-00148-x","url":null,"abstract":"<p><p>Understanding why sexual reproduction-which involves syngamy (union of gametes) and meiosis-emerged and how it has subsisted for millions of years remains a fundamental problem in biology. Considered as the essence of sex, meiotic recombination is initiated by a DNA double-strand break (DSB) that forms on one of the pairing homologous chromosomes. This DNA lesion is subsequently repaired by gene conversion, the non-reciprocal transfer of genetic information from the intact homolog. A major issue is which of the pairing homologs undergoes DSB formation. Accumulating evidence shows that chromosomal sites where the pairing homologs locally differ in size, i.e., are heterozygous for an insertion or deletion, often display disparity in gene conversion. Biased conversion tends to duplicate insertions and lose deletions. This suggests that DSB is preferentially formed on the \"shorter\" homologous region, which thereby acts as the recipient for DNA transfer. Thus, sex primarily functions as a genome (re)loading mechanism. It ensures the restoration of formerly lost DNA sequences (deletions) and allows the efficient copying and, mainly in eukaryotes, subsequent spreading of newly emerged sequences (insertions) arising initially in an individual genome, even if they confer no advantage to the host. In this way, sex simultaneously repairs deletions and increases genetic variability underlying adaptation. The model explains a remarkable increase in DNA content during the evolution of eukaryotic genomes.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10863248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network effects in multi-species fisheries. 多物种渔业的网络效应。
IF 2.1 4区 生物学
Biologia futura Pub Date : 2022-12-01 DOI: 10.1007/s42977-022-00141-4
Ferenc Jordán, Ágnes Móréh
{"title":"Network effects in multi-species fisheries.","authors":"Ferenc Jordán,&nbsp;Ágnes Móréh","doi":"10.1007/s42977-022-00141-4","DOIUrl":"https://doi.org/10.1007/s42977-022-00141-4","url":null,"abstract":"<p><p>Managing sustainable marine fisheries is one of the greatest challenges for humanity. The complexity of the issue calls for the development of socio-ecological models and the integration of our knowledge from several disciplines. Here we focus on the ecological aspects of sustainability: how can we increase the catch and, at the same time, possibly decrease negative effects on the marine ecosystem. Coexisting species live in richly interconnected interaction networks. This means that changes in their biomass are caused and may cause various direct and indirect effects on all other coexisting species in the food web. The assessment of maximum sustainable yield values is typically based on single-species analyses, poorly considering this multi-species context. If several fish species are exploited in particular combinations, their effects may not be additive and non-additivity may mean dampening. In these cases, the community response to fishing species A and B together may be smaller than the sum of fishing species A and B separately. We report on some preliminary results on how to develop a network algebra framework for better understanding food web simulation results for pairwise perturbations and their counter-intuitive effects.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10500620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of POU5F1 gene expression and protein localization in two differentiated and undifferentiated spermatogonial stem cells. 分化与未分化精原干细胞中POU5F1基因表达及蛋白定位的比较
IF 2.1 4区 生物学
Biologia futura Pub Date : 2022-12-01 DOI: 10.1007/s42977-022-00149-w
Mahla Masoudi, Hossein Azizi, Kiana Sojoudi, Maedeh Yazdani, Dariush Gholami
{"title":"Comparison of POU5F1 gene expression and protein localization in two differentiated and undifferentiated spermatogonial stem cells.","authors":"Mahla Masoudi,&nbsp;Hossein Azizi,&nbsp;Kiana Sojoudi,&nbsp;Maedeh Yazdani,&nbsp;Dariush Gholami","doi":"10.1007/s42977-022-00149-w","DOIUrl":"https://doi.org/10.1007/s42977-022-00149-w","url":null,"abstract":"<p><p>The POU domain, class 5, transcription factor 1 (POU5F1), plays a vital role in creating pluripotency and maintaining self-renewal of the spermatogonial stem cells (SSCs). In this experimental research, the gene and protein expression of POU5F1 in two populations of differentiated and undifferentiated spermatogonia were examined, by immunohistochemistry (IMH), immunocytochemistry (ICC) and Fluidigm real-time RT-PCR. Our study was extended with online databases and the creation of PPI networks. The results indicated that the POU5F1 protein was localized in the basal compartment of seminiferous tubules. Under in vitro conditions, isolated SSC colonies were ICC-positive for the POU5F1, but the protein expression level of POU5F1 in the undifferentiated populations was higher than that in differentiated. A significant POU5F1 mRNA expression was seen in passage 4 compared to passage 0 for both populations. POU5F1 has a significantly higher mRNA expression in undifferentiated SSCs than that in differentiated SSCs, also in mESCs than in SSC-like cells. Bioinformatic analysis on POU5F1 shows its impressive connection with other genes involved in spermatogonia differentiation. These results support the advanced investigations of spermatogonia differentiation, both in vitro and in vivo. A better understanding of the POU5F1 gene and its function during differentiation will give the scientific community an open perspective for the development of direct differentiation of SSC to other male germline cells which is very important in infertility treatment.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10507544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信