Sergio Martin-Saldaña, Mansoor Al-Waeel, Enrico Bagnoli, Merari Tumin Chevalier, Yazhong Bu, Christopher Lally, Una Fitzgerald, Abhay Pandit
{"title":"Hyaluronic acid-based hydrogels modulate neuroinflammation and extracellular matrix remodelling in multiple sclerosis: insights from a primary cortical cell model.","authors":"Sergio Martin-Saldaña, Mansoor Al-Waeel, Enrico Bagnoli, Merari Tumin Chevalier, Yazhong Bu, Christopher Lally, Una Fitzgerald, Abhay Pandit","doi":"10.1039/d4mh01598c","DOIUrl":"https://doi.org/10.1039/d4mh01598c","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is the main neurodegenerative disorder among young adults. Cortical involvement in MS has emerged as an important determinant of disease progression. Although inflammation is recognized as a key feature, the mechanisms of cortical pathology are still poorly understood. The critical role of the extracellular matrix (ECM) in the development and homeostasis of the central nervous system (CNS) and hyaluronic acid (HA) <i>in primis</i> has been emphasized. HA synthesis increases during neuroinflammation in the cortex, mostly through hyaluronan synthase 2 (HAS2), generating an ECM scar on demyelinated axons. Here, we aimed to prove the potential role of an external source of HA in CNS inflammation, specifically in a complex <i>in vitro</i> model of neuroinflammation using primary cortical cells (PCC). We engineered and characterized a battery of cross-linked HA-based hydrogels and tested their impact on LPS-triggered inflammation in PCC. The performance of the tested HA scaffolds is promising for their potential use <i>in vivo</i>, exhibiting an appealing anti-inflammatory response. We also studied the effect of the crosslinked HA hydrogels on hyaluronan metabolism and catabolism markers, showing a significant decrease in HAS2 expression, which could have a critical impact on scar generation in demyelinated axons. Finally, we analyzed the effect of the degradation products of the HA constructs, shedding light on the unsolved debate about the potential dual effect of HA-based materials on the CNS depending on their molecular weight. Altogether, our results contribute to baseline knowledge regarding the use of HA-based materials in the context of CNS inflammatory disorders.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discovery of magnetic field line dependent anisotropic chemiresistive response in magnetite: a new piece to the puzzle of magnetoreception.","authors":"Pratyasha Rudra, Swastik Mondal","doi":"10.1039/d4mh01752h","DOIUrl":"https://doi.org/10.1039/d4mh01752h","url":null,"abstract":"<p><p>Chemiresistive materials, which alter their electrical resistance in response to interactions with surrounding chemicals, are valued for their robustness, rapid detection ability and high sensitivity. Recent research has revealed that the sensing performance of these materials can be enhanced by applying an external magnetic field. In this study, we report a novel finding in the chemiresistive behaviour of magnetite (Fe<sub>3</sub>O<sub>4</sub>), where its response has been found to be modulated in an anisotropic manner when exposed to an external magnetic field, analogous to Earth's magnetic field. Remarkably, substantial variations have been observed in response to analytes naturally present in the atmosphere. A remarkable increase in response was observed upon applying a 0.05 mT magnetic field, resulting in a more than 26-fold enhancement in sensitivity to relative humidity (98%), as well as a greater than 10-fold improvement in response to CO<sub>2</sub> and a 25-fold increase in response to NO<sub>2</sub>. This chemiresistive response exhibits a strong anisotropic dependence on the strength, direction and inclination of the magnetic field, suggesting that magnetite's electrical resistance dynamically adapts to both magnetic and chemical environmental changes. The observed behaviour under an Earth-like magnetic field closely mirrors the magnetoreception seen in biological species that rely on magnetite for navigation. This finding may provide new insights into the mechanisms behind magnetite-based magnetoreception observed in various biological species.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Xu, Touchy Abeda Sultana, Koki Kitai, Jiang Guo, Toyomitsu Seki, Ryo Tamura, Koji Tsuda, Junichiro Shiomi
{"title":"Experiment-in-loop interactive optimization of polymer composites for \"5G-and-beyond\" communication technologies.","authors":"Bin Xu, Touchy Abeda Sultana, Koki Kitai, Jiang Guo, Toyomitsu Seki, Ryo Tamura, Koji Tsuda, Junichiro Shiomi","doi":"10.1039/d4mh01606h","DOIUrl":"https://doi.org/10.1039/d4mh01606h","url":null,"abstract":"<p><p>\"Fifth-generation-and-beyond\" communication technologies have sparked considerable demand for polymer composite materials with low coefficients of thermal expansion (CTE) and low dielectric loss at high operation frequencies. However, the complexity of process parameters and the lack of knowledge about fabrication procedures hinder this goal. In this study, state-of-the-art experiment-in-loop Bayesian optimization (EiL-BO) was developed to optimize a composite of a perfluoroalkoxyalkane matrix with silica fillers. The Gaussian process equipped with an automatic relevance determination kernel that automatically adjusts the scaling parameters of individual dimensions effectively enhances EiL-BO's ability to search for candidates in a complex and anisotropic multidimensional space. This addresses the critical challenge of handling problems with high-dimensional parameters and is capable of managing eight-dimensional parameters, including filler morphology, surface chemistry, and compounding process parameters. The obtained optimal composite shows a low CTE of 24.7 ppm K<sup>-1</sup> and an extinction coefficient of 9.5 × 10<sup>-4</sup>, outperforming the existing polymeric composite, revealing exceptionally effective and versatile EiL-BO that accelerates the development of advanced materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Materials Horizons Emerging Investigator Series: Dr Dibyajyoti Ghosh and Dr Satyaprasad P. Senanayak, Indian Institute of Technology, Delhi and National Institute of Science Education and Research, India","authors":"","doi":"10.1039/D5MH90027A","DOIUrl":"10.1039/D5MH90027A","url":null,"abstract":"<p >Our Emerging Investigator Series features exceptional work by early-career researchers working in the field of materials science.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 7","pages":" 2038-2039"},"PeriodicalIF":12.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johan Liotier, Antonio J Riquelme, Valid Mwalukuku, Quentin Huaulmé, Yann Kervella, Renaud Demadrille, Cyril Aumaître
{"title":"Data-driven modelling for electrolyte optimisation in dye-sensitised solar cells and photochromic solar cells.","authors":"Johan Liotier, Antonio J Riquelme, Valid Mwalukuku, Quentin Huaulmé, Yann Kervella, Renaud Demadrille, Cyril Aumaître","doi":"10.1039/d4mh01375a","DOIUrl":"10.1039/d4mh01375a","url":null,"abstract":"<p><p>Because they can be made semi-transparent, dye-sensitised solar cells (DSSCs) have great potential for glazing applications. Their photovoltaic performance and light transmission depend not only on the dye used, but also on the electrolyte they contain. A few years ago, we introduced the concept of solar cells with dynamic optical properties based on the use of photochromic photosensitizers. These cells allow variable light transmission according to sunlight conditions, while producing electrical energy. We found that the electrolytes commonly used in DSSCs are not optimal for this class of photosensitisers and need to be tuned. In this work, we have developed and characterised two new photochromic dyes for use in solar cells and we present a study aimed at developing electrolytes specifically adapted to these dyes. Using a methodology based on the design of experiments (DoE) combined with a machine learning (ML) approach, we show that it is possible to quickly find an optimal formulation for iodine-based electrolytes to achieve good transparency of photochromic devices with an AVT ranging from 57% to 23% across the photochromic process, while keeping the photovoltaic conversion efficiency above 2.9%. We show that this approach can be applied to other classes of electrolytes with different redox systems, such as TEMPO/TEMPO<sup>+</sup>. After optimisation, TEMPO-based electrolytes yielded photochromic semi-transparent solar cells with a PCE of up to 2.16% and an AVT varying between 55% and 13% and opaque photochromic cells with a PCE of 3.46%. Finally, this new TEMPO-based electrolyte was tested with a non-photochromic dye and gave a PCE of up to 7.64%, which is probably the highest performance to date for a dye solar cell using a pure TEMPO/TEMPO<sup>+</sup> redox system.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rocío Natera Abalos, Ilaria Abdel Aziz, Matías Caverzan, Arianna Sosa Lochedino, Luis E Ibarra, Antonela Gallastegui, Carlos A Chesta, M Lorena Gómez, David Mecerreyes, Rodrigo E Palacios, Miryam Criado-Gonzalez
{"title":"Poly(3-hexylthiophene) nanoparticles as visible-light photoinitiators and photosensitizers in 3D printable acrylic hydrogels for photodynamic therapies.","authors":"Rocío Natera Abalos, Ilaria Abdel Aziz, Matías Caverzan, Arianna Sosa Lochedino, Luis E Ibarra, Antonela Gallastegui, Carlos A Chesta, M Lorena Gómez, David Mecerreyes, Rodrigo E Palacios, Miryam Criado-Gonzalez","doi":"10.1039/d4mh01802h","DOIUrl":"https://doi.org/10.1039/d4mh01802h","url":null,"abstract":"<p><p>The design of smart photoelectrodes capable of stimulating the localized production of reactive oxygen species (ROS) on demand is of great interest for redox medicine therapies. In this work, poly(3-hexylthiophene) semiconducting polymer nanoparticles (P3HT SPNs) are used with a dual role to fabricate light-responsive hydrogels. First, P3HT SPNs act as visible-light photoinitiators to induce the photopolymerization of acrylic monomers such as acrylamide (AAm), 2-(hydroxyethyl) acrylate (HEA), and poly(ethylene glycol) diacrylate (PEGDA). This leads to the formation of acrylic hydrogels loaded with the P3HT SPNs, as demonstrated by photo-rheology and infrared spectroscopy. Furthermore, P3HT SPNs are also successfully used as photoinitiators for digital light processing (DLP) 3D printing purposes to fabricate shape-defined intelligent hydrogels. Interestingly, P3HT SPNs retain their photoelectrochemical properties when embedded within the polymer hydrogels, showing photocurrent densities that range from ∼0.2 to ∼1.1 μA cm<sup>-2</sup> depending on the intensity of the visible light-lamp (<i>λ</i> = 467 nm). Second, they can be used as photosensitizers (PS) to generate reactive oxygen species (ROS), 12-15 μM H<sub>2</sub>O<sub>2</sub>, on demand. The acrylic hydrogels containing P3HT SPNs do not exhibit cytotoxic effects under normal physiological conditions in the darkness against mouse glioma 261 (GL261) cells and <i>S. aureus</i> bacteria. However, they induce a ∼50% reduction GL261 cancer cell viability and a ∼99% <i>S. aureus</i> cell death in contact with them upon illumination (<i>λ</i> = 467 nm) due to the localized overproduction of ROS, which makes them attractive candidates for photodynamic therapies (PDT).</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanshan Song, Congyu Hou, An Yang, Lishi Wei, Hongzhi Liu, Di Xie, Yongming Song
{"title":"Ultraviolet durable and recyclable radiative cooling covering for efficient building energy saving.","authors":"Shanshan Song, Congyu Hou, An Yang, Lishi Wei, Hongzhi Liu, Di Xie, Yongming Song","doi":"10.1039/d4mh01926a","DOIUrl":"https://doi.org/10.1039/d4mh01926a","url":null,"abstract":"<p><p>Passive radiative cooling (PRC) is a zero-energy thermal management technology used for efficient building energy saving. Polymer-based porous films are promising PRC materials, but their low ultraviolet (UV) durability and lack of recyclability limit their long-term and widespread application. Herein, a recyclable polymer-based porous radiative cooling film with excellent ultraviolet durability was developed as the covering of a building. Owing to the Mie scattering effect of the porous structure and strong infrared emittance of ethyl cellulose, the film demonstrated a radiative cooling capability of 10.6 °C at a solar irradiance of 510 W m<sup>-2</sup>. The calculated energy consumption results indicated that the average cooling consumption reached 429.4 kW h, and 31% of the cooling energy could be saved. Notably, owing to the conjugated benzene ring structure of styrene-ethylene-butylene-styrene (SEBS), the film blocked most of the incident UV radiation and diffused the absorptive energy through the delocalization effect of electron clouds. Thus, the film retained high solar reflectivity after continuous UV exposure for 240 h. Notably, the film could be cyclically utilized using a simple nonsolvent-induced phase separation (NIPS) approach. This research offers new insights into the design of UV-durable and recyclable PRC materials, providing a promising prospect for minimizing global building energy consumption and facilitating the development of sustainable buildings.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an injectable salicylic acid-choline eutectic hydrogel for enhanced treatment of periodontitis.","authors":"Jin Zhang, Lingzhuang Meng, Yinan Jia, Jianshu Li, Xinyuan Xu, Xin Xu","doi":"10.1039/d4mh01563k","DOIUrl":"https://doi.org/10.1039/d4mh01563k","url":null,"abstract":"<p><p>Periodontitis, a chronic inflammatory disease triggered by dental plaque, often presents challenges in management, particularly in severe cases where mechanical debridement alone may be insufficient. As a result, adjunctive therapies, particularly localized drug delivery systems with both antimicrobial and anti-inflammatory properties, are essential to enhance the efficacy of periodontitis management. In this study, we developed a multifunctional hydrogel by incorporating a salicylic acid-choline deep eutectic solvent (DES) into a chitosan/β-glycerol phosphate sodium (CS/GP) hydrogel matrix for the treatment of periodontitis. The DES-CS/GP hydrogel demonstrated favorable physicochemical properties, including gelation and injectability, making it highly suitable for application in the oral cavity. The hydrogel effectively inhibited the growth of key periodontal pathogens, <i>Porphyromonas gingivalis</i> and <i>Fusobacterium nucleatum</i>, and significantly downregulated the expression of pro-inflammatory cytokines TNF-α and IL-1β <i>in vitro</i>. Cytocompatibility assessments showed over 80% cell viability in human gingival fibroblasts, human gingival epithelial cells, and human oral keratinocytes over 5 days treated with DES-CS/GP, with fluorescence microscopy confirming robust cytoskeletal integrity. Furthermore, the hydrogel enhanced permeability through gingival tissues <i>in vitro.</i> In a rat model of periodontitis, the hydrogel significantly mitigated bone loss, reduced bacterial loads of <i>P. g</i>, and suppressed TNF-α and IL-1β expression in gingival tissues. These findings underscore the hydrogel's potential as a safe and effective adjunctive therapy for periodontitis, offering a combination of antimicrobial, anti-inflammatory, and tissue-permeating properties with high biosafety and ease of application.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yufu Wang, Vajini Ukwattage, Yijun Xiong, Georgina K Such
{"title":"Advancing endosomal escape of polymeric nanoparticles: towards improved intracellular delivery.","authors":"Yufu Wang, Vajini Ukwattage, Yijun Xiong, Georgina K Such","doi":"10.1039/d4mh01781a","DOIUrl":"https://doi.org/10.1039/d4mh01781a","url":null,"abstract":"<p><p>Polymeric nanoparticles have emerged as a promising platform for the intracellular delivery of therapeutics, offering unique advantages such as tunable chemical properties and stimuli-responsive behavior. However, a significant challenge in their use remains the efficient delivery of therapeutic cargo to the site of action. This typically relies on escape from endosomal/lysosomal compartments where nanoparticles are trapped upon internalisation within a cell, a process termed endosomal escape. Despite considerable research, the mechanisms underlying endosomal escape are still poorly understood, with inconsistent findings across studies. Moreover, there is a notable lack of standardized methods to accurately quantify this escape process. In this review, we explore the current understanding of endosomal escape mechanisms specific to polymeric nanoparticles and explore critical design strategies that have been used. We also highlight recent advancements in methods to quantify endosomal escape, with the aim of promoting broader application of these technologies in understanding the behaviour of polymeric nanoparticles.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujie Peng, Peipei Shao, Ye Yuan, Jingru Mou, Rui-Tao Wen, Hong Chen, Ming Xiao
{"title":"Unravelling the mechanism of coloration and prolonged discoloration in abnormally thermochromic PDMS nanocomposites.","authors":"Yujie Peng, Peipei Shao, Ye Yuan, Jingru Mou, Rui-Tao Wen, Hong Chen, Ming Xiao","doi":"10.1039/d5mh00046g","DOIUrl":"https://doi.org/10.1039/d5mh00046g","url":null,"abstract":"<p><p>Traditional thermochromic materials prioritize high sensitivity and rapid discoloration. Reversible thermochromism with delayed discoloration is highly desirable for applications like thermal history indicators and energy-saving windows, yet it has rarely been achieved. Here, we construct such thermochromic composites simply by assembling hydrophobic silica nanoparticles in a polydimethylsiloxane (PDMS) matrix. The films transition from colorless and translucent to blue within minutes when heated above 60 °C and retain their blue color for over eight hours at 20 °C. Remarkably, the discoloration time can be further extended by lowering the environmental relative humidity. Integrating measurements of water absorption, refractive indices, and optical model calculation, we demonstrate that the coloration rises from the combined effects of Rayleigh scattering and multiple scattering and the prolonged discoloration time is surprisingly caused by the gradual absorption of moisture. This unique thermochromic material opens new avenues for advancing thermochromic technology applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}