{"title":"WWP2 binds to NKRF, enhances the NF-κB signaling, and promotes malignant phenotypes of acute myeloid leukemia cells.","authors":"Hongjia Wang, Xin Lian, Kexin Wang, Shuye Wang","doi":"10.1139/bcb-2022-0360","DOIUrl":"10.1139/bcb-2022-0360","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is one of the hematological malignancies with a high recurrence rate. WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) is identified as a pivotal regulator of tumor progression. This study aimed to assess the possible role of WWP2 in AML. Analysis of the GEPIA database indicated an elevated WWP2 expression in AML. We established stable WWP2-overexpressed or WWP2-silenced cells using lentivirus loaded with cDNA encoding WWP2 mRNA or shRNA targeting WWP2. Notably, WWP2 overexpression facilitated cell proliferation and cell cycle progression, which was manifested as the increase of colony formation number, S-phase percentage and cell cycle related protein levels. As observed, WWP2 knockdown presented opposite effects, leading to inhibition of tumorigenicity. Strikingly, WWP2 knockdown induced apoptosis, accompanied by upregulation of pro-apoptosis proteins cleaved caspase-9, Bax and cleaved caspase-3 and downregulation of anti-apoptosis protein Bcl-2. Functionally, we further confirmed that WWP2 overexpression enhanced the NF-κB signaling and upregulated the levels of downstream genes, which may contribute to aggravating the development of AML. More importantly, by co-immunoprecipitation assay, we verified that WWP2 bound to NF-κB-repressing factor (NKRF) and promoted NKRF ubiquitylation. Dramatically, NKRF overexpression abolished the role of WWP2 in facilitating the process of AML. Overall, our observations confirm that WWP2 exerts a critical role in the tumorigenicity of AML, and NKRF is regarded as an essential factor in the WWP2-mediated AML progression. WWP2 may be proposed as a promising target of AML.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stacey N Lee, Victoria Hoskin, Céline M Laumont, Shannon Snelling, Lorenzo Lindo, Lou Bird, Vera Samarkina, Chantale Thurston, Grace Fox, Sarah Ivanco, Megan Mahoney, Jeanette E Boudreau, Sarah Nersesian
{"title":"BioCanRx Summit for Cancer Immunotherapy 2022 Proceedings.","authors":"Stacey N Lee, Victoria Hoskin, Céline M Laumont, Shannon Snelling, Lorenzo Lindo, Lou Bird, Vera Samarkina, Chantale Thurston, Grace Fox, Sarah Ivanco, Megan Mahoney, Jeanette E Boudreau, Sarah Nersesian","doi":"10.1139/bcb-2023-0207","DOIUrl":"10.1139/bcb-2023-0207","url":null,"abstract":"<p><p>From 19 to 21 November 2022, BioCanRx held its first post-pandemic in-person Summit for Cancer Immunotherapy in Montreal, Canada. The meeting was well attended by patients, trainees, researchers, clinicians, and industry professionals, who came together to discuss the current state and future of biotherapeutics for cancer in Canada and beyond. Three plenaries, three keynote speakers, a lively debate, and panel discussions, together with poster sessions and a social event, made the event memorable and productive. The current state of cellular therapies, cellular engineering, clinical trials, and the role of the cancer microbiome were discussed in plenary session, and the patient voice was welcomed and present throughout the meeting, in large part due to the Learning Institute, a BioCanRx initiative to include patient partners in research. In this meeting review, we highlight the platform presentations, keynote speakers, debate combatants, panellists, and the patient perspective on the annual meeting.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crosstalk between chromatin, chromosomes, and epigenetics.","authors":"Alyssa Ialongo, Ssu-Yu Yeh, Ho Sung Rhee","doi":"10.1139/bcb-2023-0165","DOIUrl":"10.1139/bcb-2023-0165","url":null,"abstract":"<p><p>The International Asilomar Chromatin, Chromosomes, and Epigenetics Conference was held online from 8 to 10 December 2022. Topics of this year's conference included chromosome dysregulation, genome integrity, nuclear organization, regulation of chromatin, epigenetics, transcription, and gene regulation in cell differentiation and disease. The meeting featured four keynote speakers, including Yamini Dalal (National Cancer Institute, USA), Meaghan Jones (University of Manitoba, Canada), Pedro Rocha (National Institute of Child Health and Human Development, USA), and Vincent Pasque (University of Leuven, Belgium). The meeting brought together scientists at all career stages to present and discuss their work in the fields of chromatin and epigenetics.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10112002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aleksandra Majewska, Klaudia Brodaczewska, Aleksandra Filipiak-Duliban, Claudine Kieda
{"title":"Comparative analysis of the effect of hypoxia in two different tumor cell models shows the differential involvement of PTEN control of proangiogenic pathways.","authors":"Aleksandra Majewska, Klaudia Brodaczewska, Aleksandra Filipiak-Duliban, Claudine Kieda","doi":"10.1139/bcb-2023-0047","DOIUrl":"10.1139/bcb-2023-0047","url":null,"abstract":"<p><p>Hypoxia, low, non-physiological oxygen tension is a key regulator of tumor microenvironment, determining the pathological tumor vascularization. Alleviation of hypoxia through vessel normalization may be a promising therapeutic approach. We aimed to assess the role of low oxygen tension in PTEN-related pathways and proangiogenic response, in vitro, in two different tumor cell lines, focusing on potential therapeutic targets for tumor vessel normalization. Downregulation of PTEN in hypoxia mediates the activation of distinct mechanisms: cytoplasmic pAKT activation in melanoma and pMDM2 modulation in kidney cancer. We show that hypoxia-induced proangiogenic potential was stronger in Renca cells than B16 F10-confirmed by a distinct secretory potential and different ability to affect endothelial cells functions. Therefore, the impact of hypoxia on PTEN-mediated regulation may determine the therapeutic targets and effectiveness of vessel normalization and intrinsic characteristics of cancer cell have to be taken into account when designing treatment.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10474933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LINE-1: an emerging initiator of cGAS-STING signalling and inflammation that is dysregulated in disease.","authors":"Sabateeshan Mathavarajah, Graham Dellaire","doi":"10.1139/bcb-2023-0134","DOIUrl":"10.1139/bcb-2023-0134","url":null,"abstract":"<p><p>The cGAS-STING (cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)) axis integrates DNA damage and cellular stress with type I interferon (IFN) signalling to facilitate transcriptional changes underlying inflammatory stress responses. The cGAS-STING pathway responds to cytosolic DNA in the form of double-stranded DNA, micronuclei, and long interspersed nuclear element 1 (L1) retroelements. L1 retroelements are a class of self-propagating non-long terminal repeat transposons that have remained highly active in mammalian genomes. L1 retroelements are emerging as important inducers of cGAS-STING and IFN signalling, which are often dysregulated in several diseases, including cancer. A key repressor of cGAS-STING and L1 activity is the exonuclease three prime repair exonuclease 1 (TREX1), and loss of TREX1 promotes the accumulation of L1. In addition, L1 dysregulation is a common theme among diseases with chronic induction of type I IFN signalling through cGAS-STING, such as Aicardi-Goutières syndrome, Fanconi anemia, and dermatomyositis. Although TREX1 is highly conserved in tetrapod species, other suppressor proteins exist that inhibit L1 retrotransposition. These suppressor genes when mutated are often associated with diseases characterized by unchecked inflammation that is associated with high cGAS-STING activity and elevated levels of L1 expression. In this review, we discuss these interconnected pathways of L1 suppression and their role in the regulation of cGAS-STING and inflammation in disease.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10103733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline M Putnam, Lahari Kondeti, Meredith B A Kesler, Melinda E Varney
{"title":"Modulating the immune system as a therapeutic target for myelodysplastic syndromes and acute myeloid leukemia.","authors":"Caroline M Putnam, Lahari Kondeti, Meredith B A Kesler, Melinda E Varney","doi":"10.1139/bcb-2022-0374","DOIUrl":"10.1139/bcb-2022-0374","url":null,"abstract":"<p><p>Modulating the immune system to treat diseases, including myeloid malignancies, has resulted in the development of a multitude of novel therapeutics in recent years. Myelodysplastic syndromes or neoplasms (MDS) and acute myeloid leukemia (AML) are hematologic malignancies that arise from defects in hematopoietic stem and progenitor cells (HSPCs). Dysregulated immune responses, especially in innate immune and inflammatory pathways, are highly associated with the acquisition of HSPC defects in MDS and AML pathogenesis. In addition to utilizing the immune system in immunotherapeutic interventions such as chimeric antigen receptor T cell therapy, vaccines, and immune checkpoint inhibitors, mitigating dysregulation of innate immune and inflammatory responses in MDS and AML remains a priority in slowing the initiation and progression of these myeloid malignancies. This review provides a comprehensive summary of the current progress of diverse strategies to utilize or modulate the immune system in the treatment of MDS and AML.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9979226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time to treat the climate and nature crisis as one indivisible global health emergency.","authors":"","doi":"10.1139/bcb-2023-0329","DOIUrl":"10.1139/bcb-2023-0329","url":null,"abstract":"","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138497716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johan Sebastian Lopez Salguero, Melissa Rodríguez Rendón, Jessica Triviño Valencia, Jorge Andrés Cuellar Gil, Carlos Andrés Naranjo Galvis, Oscar Moscoso Londoño, César Leandro Londoño Calderón, Fabio Augusto Gonzáles Osorio, Reinel Tabares Soto
{"title":"Automatic detection of <i>Cryptosporidium</i> in optical microscopy images using YOLOv5<i>x</i>: a comparative study.","authors":"Johan Sebastian Lopez Salguero, Melissa Rodríguez Rendón, Jessica Triviño Valencia, Jorge Andrés Cuellar Gil, Carlos Andrés Naranjo Galvis, Oscar Moscoso Londoño, César Leandro Londoño Calderón, Fabio Augusto Gonzáles Osorio, Reinel Tabares Soto","doi":"10.1139/bcb-2023-0059","DOIUrl":"10.1139/bcb-2023-0059","url":null,"abstract":"<p><p>Here, a machine learning tool (YOLOv5) enables the detection of <i>Cryptosporidium</i> microorganisms using optical and phase contrast microscope images. The two databases were processed using 520 images (optical microscopy) and 1200 images (phase contrast microscopy). It used Python libraries to label, standardize the size, and crop the images to generate the input tensors to the YOLOv5 network (s, m, and l). It implemented two experiments using randomly initialized weights in optical and phase contrast microscope images. The other two experiments used the parameters for the best training time obtained before and after retraining the models. Metrics used to assess model accuracy were mean average accuracy, confusion matrix, and the F1 scores. All three metrics confirmed that the optimal model used the best epoch of optical imaging training and retraining with phase contrast imaging. Experiments with randomly initialized weights with optical imaging showed the lowest precision for <i>Cryptosporidium</i> detection. The most stable model was YOLOv5m, with the best results in all categories. However, the differences between all models are lower than 2%, and YOLOv5s is the best option for <i>Cryptosporidium</i> detection considering the differences in computational costs of the models.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10367400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NDUFA4 promotes the progression of head and neck paraganglioma by inhibiting ferroptosis.","authors":"Zhigang Wang, Erxing Tao, Yiming Chen, Qi Wang, Min Liu, Liang Wei, Siyi Xu, Wei Chen, Chunlong Zhong","doi":"10.1139/bcb-2023-0018","DOIUrl":"10.1139/bcb-2023-0018","url":null,"abstract":"<p><p>NDUFA4 is a component of respiratory chain-oxidative phosphorylation pathway. NDUFA4 is highly expressed in tumor tissues, but little is known about the function of NDUFA4 in head and neck paraganglioma (HNPGL). We examined NDUFA4 expression in tissues from 10 HNPGL patients and 6 controls using qRT-PCR and Western blotting. NDUFA4 knockdown PGL-626 cells were established by using lentivirus infection and puromycin screening. Cell viability, ATP production, lipid reactive oxygen species, and mitochondrial membrane potential assays were performed to investigate the ferroptotic effects in NDUFA4 deficiency HNPGL cancer cells. Xenograft mouse model was created to detect the synergetic antitumor action between NDUFA4 deficiency and Metformin. NDUFA4 was upregulated in tumor tissues of HNPGL patients. NDUFA4 knockdown impaired the assembly of mitochondrial respiratory chain complexes and decreased the production of ATP and reduced cancer cell viability. Mechanistically, NDUFA4 knockdown increased cell ferroptosis, which further promoted Metformin-induced ferroptosis in PGL-626 cells. Therefore, NDUFA4 deficiency enhanced Metformin-mediated inhibition of the HNPGL progression in mice. In conclusion, NDUFA4 promotes the progression of HNPGL, and NDUFA4 knockdown enhances Metformin-mediated inhibition of the HNPGL progression in a mouse model.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10022465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}