JMIR biomedical engineering最新文献

筛选
英文 中文
Detection of Mental Fatigue in the General Population: Feasibility Study of Keystroke Dynamics as a Real-world Biomarker. 普通人群精神疲劳的检测:击键动力学作为真实世界生物标志物的可行性研究
JMIR biomedical engineering Pub Date : 2022-11-21 DOI: 10.2196/41003
Alejandro Acien, Aythami Morales, Ruben Vera-Rodriguez, Julian Fierrez, Ijah Mondesire-Crump, Teresa Arroyo-Gallego
{"title":"Detection of Mental Fatigue in the General Population: Feasibility Study of Keystroke Dynamics as a Real-world Biomarker.","authors":"Alejandro Acien, Aythami Morales, Ruben Vera-Rodriguez, Julian Fierrez, Ijah Mondesire-Crump, Teresa Arroyo-Gallego","doi":"10.2196/41003","DOIUrl":"10.2196/41003","url":null,"abstract":"<p><strong>Background: </strong>Mental fatigue is a common and potentially debilitating state that can affect individuals' health and quality of life. In some cases, its manifestation can precede or mask early signs of other serious mental or physiological conditions. Detecting and assessing mental fatigue can be challenging nowadays as it relies on self-evaluation and rating questionnaires, which are highly influenced by subjective bias. Introducing more objective, quantitative, and sensitive methods to characterize mental fatigue could be critical to improve its management and the understanding of its connection to other clinical conditions.</p><p><strong>Objective: </strong>This paper aimed to study the feasibility of using keystroke biometrics for mental fatigue detection during natural typing. As typing involves multiple motor and cognitive processes that are affected by mental fatigue, our hypothesis was that the information captured in keystroke dynamics can offer an interesting mean to characterize users' mental fatigue in a real-world setting.</p><p><strong>Methods: </strong>We apply domain transformation techniques to adapt and transform TypeNet, a state-of-the-art deep neural network, originally intended for user authentication, to generate a network optimized for the fatigue detection task. All experiments were conducted using 3 keystroke databases that comprise different contexts and data collection protocols.</p><p><strong>Results: </strong>Our preliminary results showed area under the curve performances ranging between 72.2% and 80% for fatigue versus rested sample classification, which is aligned with previously published models on daily alertness and circadian cycles. This demonstrates the potential of our proposed system to characterize mental fatigue fluctuations via natural typing patterns. Finally, we studied the performance of an active detection approach that leverages the continuous nature of keystroke biometric patterns for the assessment of users' fatigue in real time.</p><p><strong>Conclusions: </strong>Our results suggest that the psychomotor patterns that characterize mental fatigue manifest during natural typing, which can be quantified via automated analysis of users' daily interaction with their device. These findings represent a step towards the development of a more objective, accessible, and transparent solution to monitor mental fatigue in a real-world environment.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e41003"},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43752947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accuracy of Fully Automated 3D Imaging System for Child Anthropometry in a Low-Resource Setting: Effectiveness Evaluation in Malakal, South Sudan. 在低资源环境下用于儿童人体测量的全自动3D成像系统的准确性:南苏丹马拉卡勒的有效性评估(预印本)
JMIR biomedical engineering Pub Date : 2022-10-21 DOI: 10.2196/40066
Eva Leidman, Muhammad Ali Jatoi, Iris Bollemeijer, Jennifer Majer, Shannon Doocy
{"title":"Accuracy of Fully Automated 3D Imaging System for Child Anthropometry in a Low-Resource Setting: Effectiveness Evaluation in Malakal, South Sudan.","authors":"Eva Leidman, Muhammad Ali Jatoi, Iris Bollemeijer, Jennifer Majer, Shannon Doocy","doi":"10.2196/40066","DOIUrl":"10.2196/40066","url":null,"abstract":"<p><strong>Background: </strong>Adoption of 3D imaging systems in humanitarian settings requires accuracy comparable with manual measurement notwithstanding additional constraints associated with austere settings.</p><p><strong>Objective: </strong>This study aimed to evaluate the accuracy of child stature and mid-upper arm circumference (MUAC) measurements produced by the AutoAnthro 3D imaging system (third generation) developed by Body Surface Translations Inc.</p><p><strong>Methods: </strong>A study of device accuracy was embedded within a 2-stage cluster survey at the Malakal Protection of Civilians site in South Sudan conducted between September 2021 and October 2021. All children aged 6 to 59 months within selected households were eligible. For each child, manual measurements were obtained by 2 anthropometrists following the protocol used in the 2006 World Health Organization Child Growth Standards study. Scans were then captured by a different enumerator using a Samsung Galaxy 8 phone loaded with a custom software, AutoAnthro, and an Intel RealSense 3D scanner. The scans were processed using a fully automated algorithm. A multivariate logistic regression model was fit to evaluate the adjusted odds of achieving a successful scan. The accuracy of the measurements was visually assessed using Bland-Altman plots and quantified using average bias, limits of agreement (LoAs), and the 95% precision interval for individual differences. Key informant interviews were conducted remotely with survey enumerators and Body Surface Translations Inc developers to understand challenges in beta testing, training, data acquisition and transmission.</p><p><strong>Results: </strong>Manual measurements were obtained for 539 eligible children, and scan-derived measurements were successfully processed for 234 (43.4%) of them. Caregivers of at least 10.4% (56/539) of the children refused consent for scan capture; additional scans were unsuccessfully transmitted to the server. Neither the demographic characteristics of the children (age and sex), stature, nor MUAC were associated with availability of scan-derived measurements; team was significantly associated (P<.001). The average bias of scan-derived measurements in cm was -0.5 (95% CI -2.0 to 1.0) for stature and 0.7 (95% CI 0.4-1.0) for MUAC. For stature, the 95% LoA was -23.9 cm to 22.9 cm. For MUAC, the 95% LoA was -4.0 cm to 5.4 cm. All accuracy metrics varied considerably by team. The COVID-19 pandemic-related physical distancing and travel policies limited testing to validate the device algorithm and prevented developers from conducting in-person training and field oversight, negatively affecting the quality of scan capture, processing, and transmission.</p><p><strong>Conclusions: </strong>Scan-derived measurements were not sufficiently accurate for the widespread adoption of the current technology. Although the software shows promise, further investments in the software algorithms are needed to address issue","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e40066"},"PeriodicalIF":0.0,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47749396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telemonitoring of Home-Based Biking Exercise: Assessment of Wireless Interfaces. 家庭自行车运动的远程监控:无线接口的评估(预印本)
JMIR biomedical engineering Pub Date : 2022-10-12 DOI: 10.2196/41782
Aref Smiley, Te-Yi Tsai, Wanting Cui, Irena Parvanova, Jinyan Lyu, Elena Zakashansky, Taulant Xhakli, Hu Cui, Joseph Finkelstein
{"title":"Telemonitoring of Home-Based Biking Exercise: Assessment of Wireless Interfaces.","authors":"Aref Smiley, Te-Yi Tsai, Wanting Cui, Irena Parvanova, Jinyan Lyu, Elena Zakashansky, Taulant Xhakli, Hu Cui, Joseph Finkelstein","doi":"10.2196/41782","DOIUrl":"10.2196/41782","url":null,"abstract":"<p><strong>Background: </strong>Telerehabiliation has been shown to have great potential in expanding access to rehabilitation services, enhancing patients' quality of life, and improving clinical outcomes. Stationary biking exercise can serve as an effective aerobic component of home-based physical rehabilitation programs. Remote monitoring of biking exercise provides necessary safeguards to ensure exercise adherence and safety in patients' homes. The scalability of the current remote monitoring of biking exercise solutions is impeded by the high cost that limits patient access to these services, especially among older adults with chronic health conditions.</p><p><strong>Objective: </strong>The aim of this project was to design and test two low-cost wireless interfaces for the telemonitoring of home-based biking exercise.</p><p><strong>Methods: </strong>We designed an interactive biking system (iBikE) that comprises a tablet PC and a low-cost bike. Two wireless interfaces to monitor the revolutions per minute (RPM) were built and tested. The first version of the iBikE system uses Bluetooth Low Energy (BLE) to send information from the iBikE to the PC tablet, and the second version uses a Wi-Fi network for communication. Both systems provide patients and their clinical teams the capability to monitor exercise progress in real time using a simple graphical representation. The bike can be used for upper or lower limb rehabilitation. We developed two tablet applications with the same graphical user interfaces between the application and the bike sensors but with different communication protocols (BLE and Wi-Fi). For testing purposes, healthy adults were asked to use an arm bike for three separate subsessions (1 minute each at a slow, medium, and fast pace) with a 1-minute resting gap. While collecting speed values from the iBikE application, we used a tachometer to continuously measure the speed of the bikes during each subsession. Collected data were later used to assess the accuracy of the measured data from the iBikE system.</p><p><strong>Results: </strong>Collected RPM data in each subsession (slow, medium, and fast) from the iBikE and tachometer were further divided into 4 categories, including RPM in every 10-second bin (6 bins), RPM in every 20-second bin (3 bins), RPM in every 30-second bin (2 bins), and RPM in each 1-minute subsession (60 seconds, 1 bin). For each bin, the mean difference (iBikE and tachometer) was then calculated and averaged for all bins in each subsession. We saw a decreasing trend in the mean RPM difference from the 10-second to the 1-minute measurement. For the 10-second measurements during the slow and fast cycling, the mean discrepancy between the wireless interface and tachometer was 0.67 (SD 0.24) and 1.22 (SD 0.67) for the BLE iBike, and 0.66 (SD 0.48) and 0.87 (SD 0.91) for the Wi-Fi iBike system, respectively. For the 1-minute measurements during the slow and fast cycling, the mean discrepancy between the wirele","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"1 1","pages":"e41782"},"PeriodicalIF":0.0,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41694224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Dimensional Analysis of Finger Motion and Screening of Cervical Myelopathy With a Noncontact Sensor: Diagnostic Case-Control Study. 手指运动的高维分析和非接触式传感器筛查颈脊髓病:一项诊断性病例对照研究(预印本)
JMIR biomedical engineering Pub Date : 2022-10-03 DOI: 10.2196/41327
Takafumi Koyama, Ryota Matsui, Akiko Yamamoto, Eriku Yamada, Mio Norose, Takuya Ibara, Hidetoshi Kaburagi, Akimoto Nimura, Yuta Sugiura, Hideo Saito, Atsushi Okawa, Koji Fujita
{"title":"High-Dimensional Analysis of Finger Motion and Screening of Cervical Myelopathy With a Noncontact Sensor: Diagnostic Case-Control Study.","authors":"Takafumi Koyama, Ryota Matsui, Akiko Yamamoto, Eriku Yamada, Mio Norose, Takuya Ibara, Hidetoshi Kaburagi, Akimoto Nimura, Yuta Sugiura, Hideo Saito, Atsushi Okawa, Koji Fujita","doi":"10.2196/41327","DOIUrl":"10.2196/41327","url":null,"abstract":"<p><strong>Background: </strong>Cervical myelopathy (CM) causes several symptoms such as clumsiness of the hands and often requires surgery. Screening and early diagnosis of CM are important because some patients are unaware of their early symptoms and consult a surgeon only after their condition has become severe. The 10-second hand grip and release test is commonly used to check for the presence of CM. The test is simple but would be more useful for screening if it could objectively evaluate the changes in movement specific to CM. A previous study analyzed finger movements in the 10-second hand grip and release test using the Leap Motion, a noncontact sensor, and a system was developed that can diagnose CM with high sensitivity and specificity using machine learning. However, the previous study had limitations in that the system recorded few parameters and did not differentiate CM from other hand disorders.</p><p><strong>Objective: </strong>This study aims to develop a system that can diagnose CM with higher sensitivity and specificity, and distinguish CM from carpal tunnel syndrome (CTS), a common hand disorder. We then validated the system with a modified Leap Motion that can record the joints of each finger.</p><p><strong>Methods: </strong>In total, 31, 27, and 29 participants were recruited into the CM, CTS, and control groups, respectively. We developed a system using Leap Motion that recorded 229 parameters of finger movements while participants gripped and released their fingers as rapidly as possible. A support vector machine was used for machine learning to develop the binary classification model and calculated the sensitivity, specificity, and area under the curve (AUC). We developed two models, one to diagnose CM among the CM and control groups (CM/control model), and the other to diagnose CM among the CM and non-CM groups (CM/non-CM model).</p><p><strong>Results: </strong>The CM/control model indexes were as follows: sensitivity 74.2%, specificity 89.7%, and AUC 0.82. The CM/non-CM model indexes were as follows: sensitivity 71%, specificity 72.87%, and AUC 0.74.</p><p><strong>Conclusions: </strong>We developed a screening system capable of diagnosing CM with higher sensitivity and specificity. This system can differentiate patients with CM from patients with CTS as well as healthy patients and has the potential to screen for CM in a variety of patients.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e41327"},"PeriodicalIF":0.0,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46542744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncontact Longitudinal Respiratory Rate Measurements in Healthy Adults Using Radar-Based Sleep Monitor (Somnofy): Validation Study. 使用基于雷达的睡眠监测仪(Somnofy)测量健康成年人的非接触性纵向呼吸频率:验证研究
JMIR biomedical engineering Pub Date : 2022-08-12 DOI: 10.2196/36618
Ståle Toften, Jonas T Kjellstadli, Ole Kristian Forstrønen Thu, Ole-Johan Ellingsen
{"title":"Noncontact Longitudinal Respiratory Rate Measurements in Healthy Adults Using Radar-Based Sleep Monitor (Somnofy): Validation Study.","authors":"Ståle Toften, Jonas T Kjellstadli, Ole Kristian Forstrønen Thu, Ole-Johan Ellingsen","doi":"10.2196/36618","DOIUrl":"10.2196/36618","url":null,"abstract":"<p><strong>Background: </strong>Respiratory rate (RR) is arguably the most important vital sign to detect clinical deterioration. Change in RR can also, for example, be associated with the onset of different diseases, opioid overdoses, intense workouts, or mood. However, unlike for most other vital parameters, an easy and accurate measuring method is lacking.</p><p><strong>Objective: </strong>This study aims to validate the radar-based sleep monitor, Somnofy, for measuring RRs and investigate whether events affecting RR can be detected from personalized baselines calculated from nightly averages.</p><p><strong>Methods: </strong>First, RRs from Somnofy for 37 healthy adults during full nights of sleep were extensively validated against respiratory inductance plethysmography. Then, the night-to-night consistency of a proposed filtered average RR was analyzed for 6 healthy participants in a pilot study in which they used Somnofy at home for 3 months.</p><p><strong>Results: </strong>Somnofy measured RR 84% of the time, with mean absolute error of 0.18 (SD 0.05) respirations per minute, and Bland-Altman 95% limits of agreement adjusted for repeated measurements ranged from -0.99 to 0.85. The accuracy and coverage were substantially higher in deep and light sleep than in rapid eye movement sleep and wake. The results were independent of age, sex, and BMI, but dependent on supine sleeping position for some radar orientations. For nightly filtered averages, the 95% limits of agreement ranged from -0.07 to -0.04 respirations per minute. In the longitudinal part of the study, the nightly average was consistent from night to night, and all substantial deviations coincided with self-reported illnesses.</p><p><strong>Conclusions: </strong>RRs from Somnofy were more accurate than those from any other alternative method suitable for longitudinal measurements. Moreover, the nightly averages were consistent from night to night. Thus, several factors affecting RR should be detectable as anomalies from personalized baselines, enabling a range of applications. More studies are necessary to investigate its potential in children and older adults or in a clinical setting.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e36618"},"PeriodicalIF":0.0,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47356726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming Rapid Diagnostic Tests for Precision Public Health: Open Guidelines for Manufacturers and Users. 为精确公共卫生转变快速诊断测试:制造商和用户开放指南
JMIR biomedical engineering Pub Date : 2022-07-29 DOI: 10.2196/26800
Peter Lubell-Doughtie, Shiven Bhatt, Roger Wong, Anuraj H Shankar
{"title":"Transforming Rapid Diagnostic Tests for Precision Public Health: Open Guidelines for Manufacturers and Users.","authors":"Peter Lubell-Doughtie, Shiven Bhatt, Roger Wong, Anuraj H Shankar","doi":"10.2196/26800","DOIUrl":"10.2196/26800","url":null,"abstract":"<p><strong>Background: </strong>Precision public health (PPH) can maximize impact by targeting surveillance and interventions by temporal, spatial, and epidemiological characteristics. Although rapid diagnostic tests (RDTs) have enabled ubiquitous point-of-care testing in low-resource settings, their impact has been less than anticipated, owing in part to lack of features to streamline data capture and analysis.</p><p><strong>Objective: </strong>We aimed to transform the RDT into a tool for PPH by defining information and data axioms and an information utilization index (IUI); identifying design features to maximize the IUI; and producing open guidelines (OGs) for modular RDT features that enable links with digital health tools to create an RDT-OG system.</p><p><strong>Methods: </strong>We reviewed published papers and conducted a survey with experts or users of RDTs in the sectors of technology, manufacturing, and deployment to define features and axioms for information utilization. We developed an IUI, ranging from 0% to 100%, and calculated this index for 33 World Health Organization-prequalified RDTs. RDT-OG specifications were developed to maximize the IUI; the feasibility and specifications were assessed through developing malaria and COVID-19 RDTs based on OGs for use in Kenya and Indonesia.</p><p><strong>Results: </strong>The survey respondents (n=33) included 16 researchers, 7 technologists, 3 manufacturers, 2 doctors or nurses, and 5 other users. They were most concerned about the proper use of RDTs (30/33, 91%), their interpretation (28/33, 85%), and reliability (26/33, 79%), and were confident that smartphone-based RDT readers could address some reliability concerns (28/33, 85%), and that readers were more important for complex or multiplex RDTs (33/33, 100%). The IUI of prequalified RDTs ranged from 13% to 75% (median 33%). In contrast, the IUI for an RDT-OG prototype was 91%. The RDT open guideline system that was developed was shown to be feasible by (1) creating a reference RDT-OG prototype; (2) implementing its features and capabilities on a smartphone RDT reader, cloud information system, and Fast Healthcare Interoperability Resources; and (3) analyzing the potential public health impact of RDT-OG integration with laboratory, surveillance, and vital statistics systems.</p><p><strong>Conclusions: </strong>Policy makers and manufacturers can define, adopt, and synergize with RDT-OGs and digital health initiatives. The RDT-OG approach could enable real-time diagnostic and epidemiological monitoring with adaptive interventions to facilitate control or elimination of current and emerging diseases through PPH.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e26800"},"PeriodicalIF":0.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47000861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning-Based Autism Spectrum Disorder Detection Using Emotion Features From Video Recordings (Preprint) 基于深度学习的基于视频记录情感特征的自闭症谱系障碍检测(预印本)
JMIR biomedical engineering Pub Date : 2022-05-30 DOI: 10.2196/39982
Essam Sleiman, O. Mutlu, Saimourya Surabhi, Arman Husic, A. Kline, P. Washington, D. Wall
{"title":"Deep Learning-Based Autism Spectrum Disorder Detection Using Emotion Features From Video Recordings (Preprint)","authors":"Essam Sleiman, O. Mutlu, Saimourya Surabhi, Arman Husic, A. Kline, P. Washington, D. Wall","doi":"10.2196/39982","DOIUrl":"https://doi.org/10.2196/39982","url":null,"abstract":"","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44947339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Framework for Mixed Reality-Based Control of Collaborative Robot: Development Study. 基于混合现实的协作机器人控制新框架:开发研究
JMIR biomedical engineering Pub Date : 2022-05-17 DOI: 10.2196/36734
Md Tanzil Shahria, Md Samiul Haque Sunny, Md Ishrak Islam Zarif, Md Mahafuzur Rahaman Khan, Preet Parag Modi, Sheikh Iqbal Ahamed, Mohammad H Rahman
{"title":"A Novel Framework for Mixed Reality-Based Control of Collaborative Robot: Development Study.","authors":"Md Tanzil Shahria, Md Samiul Haque Sunny, Md Ishrak Islam Zarif, Md Mahafuzur Rahaman Khan, Preet Parag Modi, Sheikh Iqbal Ahamed, Mohammad H Rahman","doi":"10.2196/36734","DOIUrl":"10.2196/36734","url":null,"abstract":"<p><strong>Background: </strong>Applications of robotics in daily life are becoming essential by creating new possibilities in different fields, especially in the collaborative environment. The potentials of collaborative robots are tremendous as they can work in the same workspace as humans. A framework employing a top-notch technology for collaborative robots will surely be worthwhile for further research.</p><p><strong>Objective: </strong>This study aims to present the development of a novel framework for the collaborative robot using mixed reality.</p><p><strong>Methods: </strong>The framework uses Unity and Unity Hub as a cross-platform gaming engine and project management tool to design the mixed reality interface and digital twin. It also uses the Windows Mixed Reality platform to show digital materials on holographic display and the Azure mixed reality services to capture and expose digital information. Eventually, it uses a holographic device (HoloLens 2) to execute the mixed reality-based collaborative system.</p><p><strong>Results: </strong>A thorough experiment was conducted to validate the novel framework for mixed reality-based control of a collaborative robot. This framework was successfully applied to implement a collaborative system using a 5-degree of freedom robot (xArm-5) in a mixed reality environment. The framework was stable and worked smoothly throughout the collaborative session. Due to the distributed nature of cloud applications, there is a negligible latency between giving a command and the execution of the physical collaborative robot.</p><p><strong>Conclusions: </strong>Opportunities for collaborative robots in telerehabilitation and teleoperation are vital as in any other field. The proposed framework was successfully applied in a collaborative session, and it can also be applied in other similar potential applications for robust and more promising performance.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"7 1","pages":"e36734"},"PeriodicalIF":0.0,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equity-Driven Sensing System for Measuring Skin Tone-Calibrated Peripheral Blood Oxygen Saturation (OptoBeat): Development, Design, and Evaluation Study. OptoBeat:用于测量肤色校准SpO2的权益驱动传感系统的设计和评估(预印本)
JMIR biomedical engineering Pub Date : 2022-04-22 DOI: 10.2196/34934
Alexander T Adams, Ilan Mandel, Yixuan Gao, Bryan W Heckman, Rajalakshmi Nandakumar, Tanzeem Choudhury
{"title":"Equity-Driven Sensing System for Measuring Skin Tone-Calibrated Peripheral Blood Oxygen Saturation (OptoBeat): Development, Design, and Evaluation Study.","authors":"Alexander T Adams, Ilan Mandel, Yixuan Gao, Bryan W Heckman, Rajalakshmi Nandakumar, Tanzeem Choudhury","doi":"10.2196/34934","DOIUrl":"10.2196/34934","url":null,"abstract":"<p><strong>Background: </strong>Many commodity pulse oximeters are insufficiently calibrated for patients with darker skin. We demonstrate a quantitative measurement of this disparity in peripheral blood oxygen saturation (SpO<sub>2</sub>) with a controlled experiment. To mitigate this, we present OptoBeat, an ultra-low-cost smartphone-based optical sensing system that captures SpO<sub>2</sub> and heart rate while calibrating for differences in skin tone. Our sensing system can be constructed from commodity components and 3D-printed clips for approximately US $1. In our experiments, we demonstrate the efficacy of the OptoBeat system, which can measure SpO<sub>2</sub> within 1% of the ground truth in levels as low as 75%.</p><p><strong>Objective: </strong>The objective of this work is to test the following hypotheses and implement an ultra-low-cost smartphone adapter to measure SpO<sub>2</sub>: skin tone has a significant effect on pulse oximeter measurements (hypothesis 1), images of skin tone can be used to calibrate pulse oximeter error (hypothesis 2), and SpO<sub>2</sub> can be measured with a smartphone camera using the screen as a light source (hypothesis 3).</p><p><strong>Methods: </strong>Synthetic skin with the same optical properties as human skin was used in ex vivo experiments. A skin tone scale was placed in images for calibration and ground truth. To achieve a wide range of SpO<sub>2</sub> for measurement, we reoxygenated sheep blood and pumped it through synthetic arteries. A custom optical system was connected from the smartphone screen (flashing red and blue) to the analyte and into the phone's camera for measurement.</p><p><strong>Results: </strong>The 3 skin tones were accurately classified according to the Fitzpatrick scale as types 2, 3, and 5. Classification was performed using the Euclidean distance between the measured red, green, and blue values. Traditional pulse oximeter measurements (n=2000) showed significant differences between skin tones in both alternating current and direct current measurements using ANOVA (direct current: F<sub>2,5997</sub>=3.1170 × 10<sup>5</sup>, P<.01; alternating current: F<sub>2,5997</sub>=8.07 × 10<sup>6</sup>, P<.01). Continuous SpO<sub>2</sub> measurements (n=400; 10-second samples, 67 minutes total) from 95% to 75% were captured using OptoBeat in an ex vivo experiment. The accuracy was measured to be within 1% of the ground truth via quadratic support vector machine regression and 10-fold cross-validation (R<sup>2</sup>=0.97, root mean square error=0.7, mean square error=0.49, and mean absolute error=0.5). In the human-participant proof-of-concept experiment (N=3; samples=3 × N, duration=20-30 seconds per sample), SpO<sub>2</sub> measurements were accurate to within 0.5% of the ground truth, and pulse rate measurements were accurate to within 1.7% of the ground truth.</p><p><strong>Conclusions: </strong>In this work, we demonstrate that skin tone has a significant effect on SpO<sub>2</sub","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e34934"},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44570162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cole Relaxation Frequency as a Parameter to Identify Cancer in Lung Tissue: Preliminary Animal and Ex Vivo Patient Studies. 将科尔松弛频率作为肺组织中癌症的识别参数:动物和患者体内外初步研究。
JMIR biomedical engineering Pub Date : 2022-02-21 DOI: 10.2196/35346
Les Bogdanowicz, Onur Fidaner, Donato Ceres, Alexander Grycuk, Martina Guidetti, David Demos
{"title":"The Cole Relaxation Frequency as a Parameter to Identify Cancer in Lung Tissue: Preliminary Animal and Ex Vivo Patient Studies.","authors":"Les Bogdanowicz, Onur Fidaner, Donato Ceres, Alexander Grycuk, Martina Guidetti, David Demos","doi":"10.2196/35346","DOIUrl":"10.2196/35346","url":null,"abstract":"<p><strong>Background: </strong>Lung cancer is the world's leading cause of cancer deaths, and diagnosis remains challenging. Lung cancer starts as small nodules; early and accurate diagnosis allows timely surgical resection of malignant nodules while avoiding unnecessary surgery in patients with benign nodules.</p><p><strong>Objective: </strong>The Cole relaxation frequency (CRF) is a derived electrical bioimpedance signature, which may be utilized to distinguish cancerous tissues from normal tissues.</p><p><strong>Methods: </strong>Human testing ex vivo was conducted with NoduleScan in freshly resected lung tissue from 30 volunteer patients undergoing resection for nonsmall cell lung cancer. The CRF of the tumor and the distant normal lung tissue relative to the tumor were compared to histopathology specimens to establish a potential algorithm for point-of-care diagnosis. For animal testing in vivo, 20 mice were implanted with xenograft human lung cancer tumor cells injected subcutaneously into the right flank of each mouse. Spectral impedance measurements were taken on the tumors on live animals transcutaneously and on the tumors after euthanasia. These CRF measurements were compared to healthy mouse lung tissue. For porcine lung testing ex vivo, porcine lungs were received with the trachea. After removal of the vocal box, a ventilator was attached to pressurize the lung and simulate breathing. At different locations of the lobes, the lung's surface was cut to produce a pocket that could accommodate tumors obtained from in vivo animal testing. The tumors were placed in the subsurface of the lung, and the electrode was placed on top of the lung surface directly over the tumor but with lung tissue between the tumor and the electrode. Spectral impedance measurements were taken when the lungs were in the deflated state, inflated state, and also during the inflation-deflation process to simulate breathing.</p><p><strong>Results: </strong>Among 60 specimens evaluated in 30 patients, NoduleScan allowed ready discrimination in patients with clear separation of CRF in tumor and distant normal tissue with a high degree of sensitivity (97%) and specificity (87%). In the 25 xenograft small animal model specimens measured, the CRF aligns with the separation observed in the human in vivo measurements. The CRF was successfully measured of tumors implanted into ex vivo porcine lungs, and CRF measurements aligned with previous tests for pressurized and unpressurized lungs.</p><p><strong>Conclusions: </strong>As previously shown in breast tissue, CRF in the range of 1kHz-10MHz was able to distinguish nonsmall cell lung cancer versus normal tissue. Further, as evidenced by in vivo small animal studies, perfused tumors have the same CRF signature as shown in breast tissue and human ex vivo testing. Inflation and deflation of the lung have no effect on the CRF signature. With additional development, CRF derived from spectral impedance measurements may permit point","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"7 1","pages":"e35346"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信