JMIR biomedical engineering最新文献

筛选
英文 中文
Measuring Heart Rate Accurately in Patients With Parkinson Disease During Intense Exercise: Usability Study of Fitbit Charge 4 准确测量帕金森病患者在剧烈运动时的心率:Fitbit Charge 4 的可用性研究
JMIR biomedical engineering Pub Date : 2023-12-08 DOI: 10.2196/51515
Giulia Colonna, Jocelyn Hoye, Bart de Laat, Gelsina Stanley, Alaaddin Ibrahimy, S. Tinaz, Evan D. Morris
{"title":"Measuring Heart Rate Accurately in Patients With Parkinson Disease During Intense Exercise: Usability Study of Fitbit Charge 4","authors":"Giulia Colonna, Jocelyn Hoye, Bart de Laat, Gelsina Stanley, Alaaddin Ibrahimy, S. Tinaz, Evan D. Morris","doi":"10.2196/51515","DOIUrl":"https://doi.org/10.2196/51515","url":null,"abstract":"\u0000 \u0000 Parkinson disease (PD) is the second most common neurodegenerative disease, affecting approximately 1% of the world’s population.\u0000Increasing evidence suggests that aerobic physical exercise can be beneficial in mitigating both motor and nonmotor symptoms of the disease.\u0000In a recent pilot study of the role of exercise on PD, we sought to confirm exercise intensity by monitoring heart rate (HR). For this purpose, we asked participants to wear a chest strap HR monitor (Polar Electro Oy) and the Fitbit Charge 4 (Fitbit Inc) wrist-worn HR monitor as a potential proxy due to its convenience.\u0000Polar H10 has been shown to provide highly accurate R-R interval measurements. Therefore, we treated it as the gold standard in this study. It has been shown that Fitbit Charge 4 has comparable accuracy to Polar H10 in healthy participants. It has yet to be determined if the Fitbit is as accurate as Polar H10 in patients with PD during rest and exercise.\u0000 \u0000 \u0000 \u0000 This study aimed to compare Fitbit Charge 4 to Polar H10 for monitoring HR in patients with PD at rest and during an intensive exercise program.\u0000 \u0000 \u0000 \u0000 A total of 596 exercise sessions from 11 (6 male and 5 female) participants were collected simultaneously with both devices. Patients with early-stage PD (Hoehn and Yahr ≤2) were enrolled in a 6-month exercise program designed for patients with PD. They participated in 3 one-hour exercise sessions per week. They wore both Fitbit and Polar H10 during each session. Sessions included rest, warm-up, intense exercise, and cool-down periods.\u0000We calculated the bias in the HR of the Fitbit Charge 4 at rest (5 min) and during intense exercise (20 min) by comparing the mean HR during each of the periods to the respective means measured by Polar H10 (HRFitbit – HRPolar). We also measured the sensitivity and specificity of Fitbit Charge 4 to detect average HRs that exceed the threshold for intensive exercise, defined as 70% of an individual’s theoretical maximum HR. Different types of correlations between the 2 devices were investigated.\u0000 \u0000 \u0000 \u0000 The mean bias was 1.68 beats per minute (bpm) at rest and 6.29 bpm during high-intensity exercise, with an overestimation by Fitbit Charge 4 in both conditions. The mean bias of the Fitbit across both rest and intensive exercise periods was 3.98 bpm. The device’s sensitivity in identifying high-intensity exercise sessions was 97.14%. The correlation between the 2 devices was nonlinear, suggesting Fitbit’s tendency to saturate at high values of HR.\u0000 \u0000 \u0000 \u0000 The performance of Fitbit Charge 4 is comparable to Polar H10 for assessing exercise intensity in a cohort of patients with PD (mean bias 3.98 bpm). The device could be considered a reasonable surrogate for more cumbersome chest-worn devices in future studies of clinical cohorts.\u0000","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"48 48","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138588625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Severity Classification Using Dynamic Time Warping-Based Voice Biomarkers for COVID-19 Infected Patients: A Feasibility Study (Preprint) 基于动态时间扭曲的语音生物标志物对COVID-19感染患者进行严重程度分类的可行性研究(预印本)
JMIR biomedical engineering Pub Date : 2023-11-06 DOI: 10.2196/50924
Teruhisa Watase, Yasuhiro Omiya, Shinichi Tokuno
{"title":"Severity Classification Using Dynamic Time Warping-Based Voice Biomarkers for COVID-19 Infected Patients: A Feasibility Study (Preprint)","authors":"Teruhisa Watase, Yasuhiro Omiya, Shinichi Tokuno","doi":"10.2196/50924","DOIUrl":"https://doi.org/10.2196/50924","url":null,"abstract":"Background In Japan, individuals with mild COVID-19 illness previously required to be monitored in designated areas and were hospitalized only if their condition worsened to moderate illness or worse. Daily monitoring using a pulse oximeter was a crucial indicator for hospitalization. However, a drastic increase in the number of patients resulted in a shortage of pulse oximeters for monitoring. Therefore, an alternative and cost-effective method for monitoring patients with mild illness was required. Previous studies have shown that voice biomarkers for Parkinson disease or Alzheimer disease are useful for classifying or monitoring symptoms; thus, we tried to adapt voice biomarkers for classifying the severity of COVID-19 using a dynamic time warping (DTW) algorithm where voice wavelets can be treated as 2D features; the differences between wavelet features are calculated as scores. Objective This feasibility study aimed to test whether DTW-based indices can generate voice biomarkers for a binary classification model using COVID-19 patients’ voices to distinguish moderate illness from mild illness at a significant level. Methods We conducted a cross-sectional study using voice samples of COVID-19 patients. Three kinds of long vowels were processed into 10-cycle waveforms with standardized power and time axes. The DTW-based indices were generated by all pairs of waveforms and tested with the Mann-Whitney U test (α<.01) and verified with a linear discrimination analysis and confusion matrix to determine which indices were better for binary classification of disease severity. A binary classification model was generated based on a generalized linear model (GLM) using the most promising indices as predictors. The receiver operating characteristic curve/area under the curve (ROC/AUC) validated the model performance, and the confusion matrix calculated the model accuracy. Results Participants in this study (n=295) were infected with COVID-19 between June 2021 and March 2022, were aged 20 years or older, and recuperated in Kanagawa prefecture. Voice samples (n=110) were selected from the participants’ attribution matrix based on age group, sex, time of infection, and whether they had mild illness (n=61) or moderate illness (n=49). The DTW-based variance indices were found to be significant (P<.001, except for 1 of 6 indices), with a balanced accuracy in the range between 79% and 88.6% for the /a/, /e/, and /u/ vowel sounds. The GLM achieved a high balance accuracy of 86.3% (for /a/), 80.2% (for /e/), and 88% (for /u/) and ROC/AUC of 94.8% (95% CI 90.6%-94.8%) for /a/, 86.5% (95% CI 79.8%-86.5%) for /e/, and 95.6% (95% CI 92.1%-95.6%) for /u/. Conclusions The proposed model can be a voice biomarker for an alternative and cost-effective method of monitoring the progress of COVID-19 patients in care.","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"20 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135585441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Critical Respiratory Parameter Measurements Using a Single Low-Cost Relative Humidity Sensor: Evaluation Study 使用单一低成本相对湿度传感器的连续关键呼吸参数测量:评估研究
JMIR biomedical engineering Pub Date : 2023-10-25 DOI: 10.2196/47146
Fabrice Vaussenat, Abhiroop Bhattacharya, Julie Payette, Jaime A Benavides-Guerrero, Alexandre Perrotton, Luis Felipe Gerlein, Sylvain G Cloutier
{"title":"Continuous Critical Respiratory Parameter Measurements Using a Single Low-Cost Relative Humidity Sensor: Evaluation Study","authors":"Fabrice Vaussenat, Abhiroop Bhattacharya, Julie Payette, Jaime A Benavides-Guerrero, Alexandre Perrotton, Luis Felipe Gerlein, Sylvain G Cloutier","doi":"10.2196/47146","DOIUrl":"https://doi.org/10.2196/47146","url":null,"abstract":"Background Accurate and portable respiratory parameter measurements are critical for properly managing chronic obstructive pulmonary diseases (COPDs) such as asthma or sleep apnea, as well as controlling ventilation for patients in intensive care units, during surgical procedures, or when using a positive airway pressure device for sleep apnea. Objective The purpose of this research is to develop a new nonprescription portable measurement device that utilizes relative humidity sensors (RHS) to accurately measure key respiratory parameters at a cost that is approximately 10 times less than the industry standard. Methods We present the development, implementation, and assessment of a wearable respiratory measurement device using the commercial Bosch BME280 RHS. In the initial stage, the RHS was connected to the pneumotach (PNT) gold standard device via its external connector to gather breathing metrics. Data collection was facilitated using the Arduino platform with a Bluetooth Low Energy connection, and all measurements were taken in real time without any additional data processing. The device’s efficacy was tested with 7 participants (5 men and 2 women), all in good health. In the subsequent phase, we specifically focused on comparing breathing cycle and respiratory rate measurements and determining the tidal volume by calculating the region between inhalation and exhalation peaks. Each participant's data were recorded over a span of 15 minutes. After the experiment, detailed statistical analysis was conducted using ANOVA and Bland-Altman to examine the accuracy and efficiency of our wearable device compared with the traditional methods. Results The perfused air measured with the respiratory monitor enables clinicians to evaluate the absolute value of the tidal volume during ventilation of a patient. In contrast, directly connecting our RHS device to the surgical mask facilitates continuous lung volume monitoring. The results of the 1-way ANOVA showed high P values of .68 for respiratory volume and .89 for respiratory rate, which indicate that the group averages with the PNT standard are equivalent to those with our RHS platform, within the error margins of a typical instrument. Furthermore, analysis utilizing the Bland-Altman statistical method revealed a small bias of 0.03 with limits of agreement (LoAs) of –0.25 and 0.33. The RR bias was 0.018, and the LoAs were –1.89 and 1.89. Conclusions Based on the encouraging results, we conclude that our proposed design can be a viable, low-cost wearable medical device for pulmonary parametric measurement to prevent and predict the progression of pulmonary diseases. We believe that this will encourage the research community to investigate the application of RHS for monitoring the pulmonary health of individuals.","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"AES-10 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135170420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wearable Vibratory Device (The Emma Watch) to Address Action Tremor in Parkinson Disease: Pilot Feasibility Study. 一种可穿戴振动装置治疗帕金森氏症动作震颤的初步可行性研究(预印本)
JMIR biomedical engineering Pub Date : 2023-10-23 DOI: 10.2196/40433
Alissa Pacheco, Tempest A van Schaik, Nadzeya Paleyes, Miguel Blacutt, Julio Vega, Abigail R Schreier, Haiyan Zhang, Chelsea Macpherson, Radhika Desai, Gavin Jancke, Lori Quinn
{"title":"A Wearable Vibratory Device (The Emma Watch) to Address Action Tremor in Parkinson Disease: Pilot Feasibility Study.","authors":"Alissa Pacheco, Tempest A van Schaik, Nadzeya Paleyes, Miguel Blacutt, Julio Vega, Abigail R Schreier, Haiyan Zhang, Chelsea Macpherson, Radhika Desai, Gavin Jancke, Lori Quinn","doi":"10.2196/40433","DOIUrl":"10.2196/40433","url":null,"abstract":"<p><strong>Background: </strong>Parkinson disease (PD) is a neurodegenerative disease that has a wide range of motor symptoms, such as tremor. Tremors are involuntary movements that occur in rhythmic oscillations and are typically categorized into rest tremor or action tremor. Action tremor occurs during voluntary movements and is a debilitating symptom of PD. As noninvasive interventions are limited, there is an ever-increasing need for an effective intervention for individuals experiencing action tremors. The Microsoft Emma Watch, a wristband with 5 vibrating motors, is a noninvasive, nonpharmaceutical intervention for tremor attenuation.</p><p><strong>Objective: </strong>This pilot study investigated the use of the Emma Watch device to attenuate action tremor in people with PD.</p><p><strong>Methods: </strong>The sample included 9 people with PD who were assessed on handwriting and hand function tasks performed on a digitized tablet. Tasks included drawing horizontal or vertical lines, tracing a star, spiral, writing \"elelelel\" in cursive, and printing a standardized sentence. Each task was completed 3 times with the Emma Watch programmed at different vibration intensities, which were counterbalanced: high intensity, low intensity (sham), and no vibration. Digital analysis from the tablet captured kinematic, dynamic, and spatial attributes of drawing and writing samples to calculate mathematical indices that quantify upper limb motor function. APDM Opal sensors (APDM Wearable Technologies) placed on both wrists were used to calculate metrics of acceleration and jerk. A questionnaire was provided to each participant after using the Emma Watch to gain a better understanding of their perspectives of using the device. In addition, drawings were compared to determine whether there were any visual differences between intensities.</p><p><strong>Results: </strong>In total, 9 people with PD were tested: 4 males and 5 females with a mean age of 67 (SD 9.4) years. There were no differences between conditions in the outcomes of interest measured with the tablet (duration, mean velocity, number of peaks, pause time, and number of pauses). Visual differences were observed within a small subset of participants, some of whom reported perceived improvement. The majority of participants (8/9) reported the Emma Watch was comfortable, and no problems with the device were reported.</p><p><strong>Conclusions: </strong>There were visually depicted and subjectively reported improvements in handwriting for a small subset of individuals. This pilot study was limited by a small sample size, and this should be taken into consideration with the interpretation of the quantitative results. Combining vibratory devices, such as the Emma Watch, with task specific training, or personalizing the frequency to one's individual tremor may be important steps to consider when evaluating the effect of vibratory devices on hand function or writing ability in future studies. While the E","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e40433"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45889430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Testing of a Data Capture Device for Use With Clinical Incentive Spirometers: Testing and Usability Study. 激励肺活量计:创建和测试用于临床激励肺活计的数据采集设备。(预印本)
JMIR biomedical engineering Pub Date : 2023-09-07 DOI: 10.2196/46653
Michael L Burns, Anik Sinha, Alexander Hoffmann, Zewen Wu, Tomas Medina Inchauste, Aaron Retsky, David Chesney, Sachin Kheterpal, Nirav Shah
{"title":"Development and Testing of a Data Capture Device for Use With Clinical Incentive Spirometers: Testing and Usability Study.","authors":"Michael L Burns, Anik Sinha, Alexander Hoffmann, Zewen Wu, Tomas Medina Inchauste, Aaron Retsky, David Chesney, Sachin Kheterpal, Nirav Shah","doi":"10.2196/46653","DOIUrl":"10.2196/46653","url":null,"abstract":"<p><strong>Background: </strong>The incentive spirometer is a basic and common medical device from which electronic health care data cannot be directly collected. As a result, despite numerous studies investigating clinical use, there remains little consensus on optimal device use and sparse evidence supporting its intended benefits such as prevention of postoperative respiratory complications.</p><p><strong>Objective: </strong>The aim of the study is to develop and test an add-on hardware device for data capture of the incentive spirometer.</p><p><strong>Methods: </strong>An add-on device was designed, built, and tested using reflective optical sensors to identify the real-time location of the volume piston and flow bobbin of a common incentive spirometer. Investigators manually tested sensor level accuracies and triggering range calibrations using a digital flowmeter. A valid breath classification algorithm was created and tested to determine valid from invalid breath attempts. To assess real-time use, a video game was developed using the incentive spirometer and add-on device as a controller using the Apple iPad.</p><p><strong>Results: </strong>In user testing, sensor locations were captured at an accuracy of 99% (SD 1.4%) for volume and 100% accuracy for flow. Median and average volumes were within 7.5% (SD 6%) of target volume sensor levels, and maximum sensor triggering values seldom exceeded intended sensor levels, showing a good correlation to placement on 2 similar but distinct incentive spirometer designs. The breath classification algorithm displayed a 100% sensitivity and a 99% specificity on user testing, and the device operated as a video game controller in real time without noticeable interference or delay.</p><p><strong>Conclusions: </strong>An effective and reusable add-on device for the incentive spirometer was created to allow the collection of previously inaccessible incentive spirometer data and demonstrate Internet-of-Things use on a common hospital device. This design showed high sensor accuracies and the ability to use data in real-time applications, showing promise in the ability to capture currently inaccessible clinical data. Further use of this device could facilitate improved research into the incentive spirometer to improve adoption, incentivize adherence, and investigate the clinical effectiveness to help guide clinical care.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e46653"},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48977252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radar-Based Opioid Overdose Detection Device for Public Restrooms: Design, Development, and Evaluation (Preprint) 基于雷达的公共厕所阿片类药物过量检测装置:设计、开发和评估(预印本)
JMIR biomedical engineering Pub Date : 2023-08-11 DOI: 10.2196/51754
Jessica Oreskovic, Jaycee Kaufman, Anirudh Thommandram, Yan Fossat
{"title":"Radar-Based Opioid Overdose Detection Device for Public Restrooms: Design, Development, and Evaluation (Preprint)","authors":"Jessica Oreskovic, Jaycee Kaufman, Anirudh Thommandram, Yan Fossat","doi":"10.2196/51754","DOIUrl":"https://doi.org/10.2196/51754","url":null,"abstract":"","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135491570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Variability of Lumbar Sequential Motion Patterns: Observational Study. 腰椎顺序运动模式的变异性:观察研究
JMIR biomedical engineering Pub Date : 2023-06-20 DOI: 10.2196/41906
Inge Caelers, Toon Boselie, Wouter van Hemert, Kim Rijkers, Rob De Bie, Henk van Santbrink
{"title":"The Variability of Lumbar Sequential Motion Patterns: Observational Study.","authors":"Inge Caelers, Toon Boselie, Wouter van Hemert, Kim Rijkers, Rob De Bie, Henk van Santbrink","doi":"10.2196/41906","DOIUrl":"10.2196/41906","url":null,"abstract":"<p><strong>Background: </strong>Physiological motion of the lumbar spine is a topic of interest for musculoskeletal health care professionals since abnormal motion is believed to be related to lumbar complaints. Many researchers have described ranges of motion for the lumbar spine, but only few have mentioned specific motion patterns of each individual segment during flexion and extension, mostly comprising the sequence of segmental initiation in sagittal rotation. However, an adequate definition of physiological motion is still lacking. For the lower cervical spine, a consistent pattern of segmental contributions in a flexion-extension movement in young healthy individuals was described, resulting in a definition of physiological motion of the cervical spine.</p><p><strong>Objective: </strong>This study aimed to define the lumbar spines' physiological motion pattern by determining the sequence of segmental contribution in sagittal rotation of each vertebra during maximum flexion and extension in healthy male participants.</p><p><strong>Methods: </strong>Cinematographic recordings were performed twice in 11 healthy male participants, aged 18-25 years, without a history of spine problems, with a 2-week interval (time point T1 and T2). Image recognition software was used to identify specific patterns in the sequence of segmental contributions per individual by plotting segmental rotation of each individual segment against the cumulative rotation of segments L1 to S1. Intraindividual variability was determined by testing T1 against T2. Intraclass correlation coefficients were tested by reevaluation of 30 intervertebral sequences by a second researcher.</p><p><strong>Results: </strong>No consistent pattern was found when studying the graphs of the cinematographic recordings during flexion. A much more consistent pattern was found during extension, especially in the last phase. It consisted of a peak in rotation in L3L4, followed by a peak in L2L3, and finally, in L1L2. This pattern was present in 71% (15/21) of all recordings; 64% (7/11) of the participants had a consistent pattern at both time points. Sequence of segmental contribution was less consistent in the lumbar spine than the cervical spine, possibly caused by differences in facet orientation, intervertebral discs, overprojection of the pelvis, and muscle recruitment.</p><p><strong>Conclusions: </strong>In 64% (7/11) of the recordings, a consistent motion pattern was found in the upper lumbar spine during the last phase of extension in asymptomatic young male participants. Physiological motion of the lumbar spine is a broad concept, influenced by multiple factors, which cannot be captured in a firm definition yet.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov NCT03737227; https://clinicaltrials.gov/ct2/show/NCT03737227.</p><p><strong>International registered report identifier (irrid): </strong>RR2-10.2196/14741.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"1 1","pages":"e41906"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45004619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed Reality Platforms in Telehealth Delivery: Scoping Review. 远程医疗服务中的混合现实平台:范围审查(预印本)
JMIR biomedical engineering Pub Date : 2023-03-24 DOI: 10.2196/42709
Hemendra Worlikar, Sean Coleman, Jack Kelly, Sadhbh O'Connor, Aoife Murray, Terri McVeigh, Jennifer Doran, Ian McCabe, Derek O'Keeffe
{"title":"Mixed Reality Platforms in Telehealth Delivery: Scoping Review.","authors":"Hemendra Worlikar, Sean Coleman, Jack Kelly, Sadhbh O'Connor, Aoife Murray, Terri McVeigh, Jennifer Doran, Ian McCabe, Derek O'Keeffe","doi":"10.2196/42709","DOIUrl":"10.2196/42709","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;The distinctive features of the digital reality platforms, namely augmented reality (AR), virtual reality (VR), and mixed reality (MR) have extended to medical education, training, simulation, and patient care. Furthermore, this digital reality technology seamlessly merges with information and communication technology creating an enriched telehealth ecosystem. This review provides a composite overview of the prospects of telehealth delivered using the MR platform in clinical settings.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Objective: &lt;/strong&gt;This review identifies various clinical applications of high-fidelity digital display technology, namely AR, VR, and MR, delivered using telehealth capabilities. Next, the review focuses on the technical characteristics, hardware, and software technologies used in the composition of AR, VR, and MR in telehealth.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;We conducted a scoping review using the methodological framework and reporting design using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) guidelines. Full-length articles in English were obtained from the Embase, PubMed, and Web of Science databases. The search protocol was based on the following keywords and Medical Subject Headings to obtain relevant results: \"augmented reality,\" \"virtual reality,\" \"mixed-reality,\" \"telemedicine,\" \"telehealth,\" and \"digital health.\" A predefined inclusion-exclusion criterion was developed in filtering the obtained results and the final selection of the articles, followed by data extraction and construction of the review.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;We identified 4407 articles, of which 320 were eligible for full-text screening. A total of 134 full-text articles were included in the review. Telerehabilitation, telementoring, teleconsultation, telemonitoring, telepsychiatry, telesurgery, and telediagnosis were the segments of the telehealth division that explored the use of AR, VR, and MR platforms. Telerehabilitation using VR was the most commonly recurring segment in the included studies. AR and MR has been mainly used for telementoring and teleconsultation. The most important technical features of digital reality technology to emerge with telehealth were virtual environment, exergaming, 3D avatars, telepresence, anchoring annotations, and first-person viewpoint. Different arrangements of technology-3D modeling and viewing tools, communication and streaming platforms, file transfer and sharing platforms, sensors, high-fidelity displays, and controllers-formed the basis of most systems.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;This review constitutes a recent overview of the evolving digital AR and VR in various clinical applications using the telehealth setup. This combination of telehealth with AR, VR, and MR allows for remote facilitation of clinical expertise and further development of home-based treatment. This review explores the rapidly growing suite of t","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e42709"},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49016535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Algorithm to Classify Real-World Ambulatory Status From a Wearable Device Using Multimodal and Demographically Diverse Data: Validation Study. 使用多模式和人口学多样性数据对可穿戴设备的真实世界动态状态进行分类的算法的验证研究(预印本)
JMIR biomedical engineering Pub Date : 2023-03-07 DOI: 10.2196/43726
Sara Popham, Maximilien Burq, Erin E Rainaldi, Sooyoon Shin, Jessilyn Dunn, Ritu Kapur
{"title":"An Algorithm to Classify Real-World Ambulatory Status From a Wearable Device Using Multimodal and Demographically Diverse Data: Validation Study.","authors":"Sara Popham, Maximilien Burq, Erin E Rainaldi, Sooyoon Shin, Jessilyn Dunn, Ritu Kapur","doi":"10.2196/43726","DOIUrl":"10.2196/43726","url":null,"abstract":"<p><strong>Background: </strong>Measuring the amount of physical activity and its patterns using wearable sensor technology in real-world settings can provide critical insights into health status.</p><p><strong>Objective: </strong>This study's aim was to develop and evaluate the analytical validity and transdemographic generalizability of an algorithm that classifies binary ambulatory status (yes or no) on the accelerometer signal from wrist-worn biometric monitoring technology.</p><p><strong>Methods: </strong>Biometric monitoring technology algorithm validation traditionally relies on large numbers of self-reported labels or on periods of high-resolution monitoring with reference devices. We used both methods on data collected from 2 distinct studies for algorithm training and testing, one with precise ground-truth labels from a reference device (n=75) and the second with participant-reported ground-truth labels from a more diverse, larger sample (n=1691); in total, we collected data from 16.7 million 10-second epochs. We trained a neural network on a combined data set and measured performance in multiple held-out testing data sets, overall and in demographically stratified subgroups.</p><p><strong>Results: </strong>The algorithm was accurate at classifying ambulatory status in 10-second epochs (area under the curve 0.938; 95% CI 0.921-0.958) and on daily aggregate metrics (daily mean absolute percentage error 18%; 95% CI 15%-20%) without significant performance differences across subgroups.</p><p><strong>Conclusions: </strong>Our algorithm can accurately classify ambulatory status with a wrist-worn device in real-world settings with generalizability across demographic subgroups. The validated algorithm can effectively quantify users' walking activity and help researchers gain insights on users' health status.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e43726"},"PeriodicalIF":0.0,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48560164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Suicide Risk Using Vocal Characteristics: Systematic Review. 利用声音特征检测自杀风险:系统综述(预印本)
JMIR biomedical engineering Pub Date : 2022-12-22 DOI: 10.2196/42386
Ravi Iyer, Denny Meyer
{"title":"Detection of Suicide Risk Using Vocal Characteristics: Systematic Review.","authors":"Ravi Iyer, Denny Meyer","doi":"10.2196/42386","DOIUrl":"10.2196/42386","url":null,"abstract":"<p><strong>Background: </strong>In an age when telehealth services are increasingly being used for forward triage, there is a need for accurate suicide risk detection. Vocal characteristics analyzed using artificial intelligence are now proving capable of detecting suicide risk with accuracies superior to traditional survey-based approaches, suggesting an efficient and economical approach to ensuring ongoing patient safety.</p><p><strong>Objective: </strong>This systematic review aimed to identify which vocal characteristics perform best at differentiating between patients with an elevated risk of suicide in comparison with other cohorts and identify the methodological specifications of the systems used to derive each feature and the accuracies of classification that result.</p><p><strong>Methods: </strong>A search of MEDLINE via Ovid, Scopus, Computers and Applied Science Complete, CADTH, Web of Science, ProQuest Dissertations and Theses A&I, Australian Policy Online, and Mednar was conducted between 1995 and 2020 and updated in 2021. The inclusion criteria were human participants with no language, age, or setting restrictions applied; randomized controlled studies, observational cohort studies, and theses; studies that used some measure of vocal quality; and individuals assessed as being at high risk of suicide compared with other individuals at lower risk using a validated measure of suicide risk. Risk of bias was assessed using the Risk of Bias in Non-randomized Studies tool. A random-effects model meta-analysis was used wherever mean measures of vocal quality were reported.</p><p><strong>Results: </strong>The search yielded 1074 unique citations, of which 30 (2.79%) were screened via full text. A total of 21 studies involving 1734 participants met all inclusion criteria. Most studies (15/21, 71%) sourced participants via either the Vanderbilt II database of recordings (8/21, 38%) or the Silverman and Silverman perceptual study recording database (7/21, 33%). Candidate vocal characteristics that performed best at differentiating between high risk of suicide and comparison cohorts included timing patterns of speech (median accuracy 95%), power spectral density sub-bands (median accuracy 90.3%), and mel-frequency cepstral coefficients (median accuracy 80%). A random-effects meta-analysis was used to compare 22 characteristics nested within 14% (3/21) of the studies, which demonstrated significant standardized mean differences for frequencies within the first and second formants (standardized mean difference ranged between -1.07 and -2.56) and jitter values (standardized mean difference=1.47). In 43% (9/21) of the studies, risk of bias was assessed as moderate, whereas in the remaining studies (12/21, 57%), the risk of bias was assessed as high.</p><p><strong>Conclusions: </strong>Although several key methodological issues prevailed among the studies reviewed, there is promise in the use of vocal characteristics to detect elevations in suicide r","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e42386"},"PeriodicalIF":0.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42199391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信