An Algorithm to Classify Real-World Ambulatory Status From a Wearable Device Using Multimodal and Demographically Diverse Data: Validation Study.

Sara Popham, Maximilien Burq, Erin E Rainaldi, Sooyoon Shin, Jessilyn Dunn, Ritu Kapur
{"title":"An Algorithm to Classify Real-World Ambulatory Status From a Wearable Device Using Multimodal and Demographically Diverse Data: Validation Study.","authors":"Sara Popham, Maximilien Burq, Erin E Rainaldi, Sooyoon Shin, Jessilyn Dunn, Ritu Kapur","doi":"10.2196/43726","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Measuring the amount of physical activity and its patterns using wearable sensor technology in real-world settings can provide critical insights into health status.</p><p><strong>Objective: </strong>This study's aim was to develop and evaluate the analytical validity and transdemographic generalizability of an algorithm that classifies binary ambulatory status (yes or no) on the accelerometer signal from wrist-worn biometric monitoring technology.</p><p><strong>Methods: </strong>Biometric monitoring technology algorithm validation traditionally relies on large numbers of self-reported labels or on periods of high-resolution monitoring with reference devices. We used both methods on data collected from 2 distinct studies for algorithm training and testing, one with precise ground-truth labels from a reference device (n=75) and the second with participant-reported ground-truth labels from a more diverse, larger sample (n=1691); in total, we collected data from 16.7 million 10-second epochs. We trained a neural network on a combined data set and measured performance in multiple held-out testing data sets, overall and in demographically stratified subgroups.</p><p><strong>Results: </strong>The algorithm was accurate at classifying ambulatory status in 10-second epochs (area under the curve 0.938; 95% CI 0.921-0.958) and on daily aggregate metrics (daily mean absolute percentage error 18%; 95% CI 15%-20%) without significant performance differences across subgroups.</p><p><strong>Conclusions: </strong>Our algorithm can accurately classify ambulatory status with a wrist-worn device in real-world settings with generalizability across demographic subgroups. The validated algorithm can effectively quantify users' walking activity and help researchers gain insights on users' health status.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e43726"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/43726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Measuring the amount of physical activity and its patterns using wearable sensor technology in real-world settings can provide critical insights into health status.

Objective: This study's aim was to develop and evaluate the analytical validity and transdemographic generalizability of an algorithm that classifies binary ambulatory status (yes or no) on the accelerometer signal from wrist-worn biometric monitoring technology.

Methods: Biometric monitoring technology algorithm validation traditionally relies on large numbers of self-reported labels or on periods of high-resolution monitoring with reference devices. We used both methods on data collected from 2 distinct studies for algorithm training and testing, one with precise ground-truth labels from a reference device (n=75) and the second with participant-reported ground-truth labels from a more diverse, larger sample (n=1691); in total, we collected data from 16.7 million 10-second epochs. We trained a neural network on a combined data set and measured performance in multiple held-out testing data sets, overall and in demographically stratified subgroups.

Results: The algorithm was accurate at classifying ambulatory status in 10-second epochs (area under the curve 0.938; 95% CI 0.921-0.958) and on daily aggregate metrics (daily mean absolute percentage error 18%; 95% CI 15%-20%) without significant performance differences across subgroups.

Conclusions: Our algorithm can accurately classify ambulatory status with a wrist-worn device in real-world settings with generalizability across demographic subgroups. The validated algorithm can effectively quantify users' walking activity and help researchers gain insights on users' health status.

使用多模式和人口学多样性数据对可穿戴设备的真实世界动态状态进行分类的算法的验证研究(预印本)
背景:利用可穿戴传感技术测量现实世界中的运动量及其模式,可以为了解健康状况提供重要依据:本研究旨在开发和评估一种算法的分析有效性和跨人口统计学的可推广性,该算法可根据腕戴式生物计量监测技术的加速度计信号对二元活动状态(是或否)进行分类:生物统计监测技术算法的验证传统上依赖于大量的自我报告标签或参考设备的高分辨率监测期。我们在两项不同研究中收集的数据上使用了这两种方法进行算法训练和测试,其中一项研究使用了来自参考设备的精确地面实况标签(n=75),另一项研究使用了来自更多样化、更大样本的参与者报告的地面实况标签(n=1691);我们总共收集了 1670 万个 10 秒历时的数据。我们在综合数据集上训练了一个神经网络,并在多个保留测试数据集上测量了整体和人口分层分组的性能:该算法能在 10 秒历时内准确地对非卧床状态进行分类(曲线下面积为 0.938;95% CI 为 0.921-0.958),在每日综合指标上也是如此(每日平均绝对百分比误差为 18%;95% CI 为 15%-20%),不同亚群之间没有明显的性能差异:我们的算法可以在真实世界环境中使用腕戴式设备准确地对非卧床状态进行分类,并具有跨人口亚群的普适性。经过验证的算法可以有效量化用户的步行活动,帮助研究人员深入了解用户的健康状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信