Basin ResearchPub Date : 2024-09-09DOI: 10.1111/bre.12898
Caroline Van de Vyver, Cédric Carpentier, Mary Ford, Jaume Vergés, Mihaela Melinte-Dobrinescu
{"title":"Sedimentology and structure of the Paleogene Nummulitic series of Corsica: Reconstruction of the southern termination of the western Alpine foreland basin","authors":"Caroline Van de Vyver, Cédric Carpentier, Mary Ford, Jaume Vergés, Mihaela Melinte-Dobrinescu","doi":"10.1111/bre.12898","DOIUrl":"10.1111/bre.12898","url":null,"abstract":"<p>Nummulitic Limestones deposits are preserved along the tectonic contact between the Variscan basement and Alpine units of Corsica. These marine carbonates, dated from the Late Palaeocene to the Middle Eocene, were deposited within a foreland flexural basin that is considered to be the southern continuation of the Alpine foreland basin of southeast (SE) France. However, in contrast with the Nummulitic Limestones of SE France, those of Corsica are far less documented. This field-based study constrains the sedimentology, stratigraphy and structure of the Nummulitic Limestones of Corsica in three localities (Balagne, Corte and Sari-Solenzara) to identify factors that controlled foreland basin development and to clarify its significance within the early alpine orogen. The microfacies, microfaunal assemblages and siliciclastic fractions are characterised throughout the succession at each locality. The results indicate the existence of an important Variscan basement relief to the west of the basin (West Corsican Massif) that supplied early alluvial fans found at the base of the foreland succession in the northernmost Balagne area. Continuous high clastic input strongly reduced the development and diversity of the overlying Nummulitic Limestones facies and fauna. Further south, limestones in the Corte and Sari-Solenzara areas are thicker and contain richer fauna. Three depositional models corresponding to the carbonate ramp system are proposed for the Nummulitic Limestones and used to construct paleogeographic maps illustrating the transgressive evolution of the Corsican foreland basin from the Early to the Late Eocene. Based on our results and available regional tectonic data and LT thermochronological data, we propose that the Nummulitic marine transgression took place within a continuous foreland basin encompassing southern Corsica and SE France during the early development of the western alpine arc.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 5","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142159026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basin ResearchPub Date : 2024-08-30DOI: 10.1111/bre.12890
M. S. Bauck, J. I. Faleide, H. Fossen, M. Hassaan, A. Braathen
{"title":"Late Palaeozoic structural evolution of the Patch Bank Ridge and Utsira High, northern North Sea","authors":"M. S. Bauck, J. I. Faleide, H. Fossen, M. Hassaan, A. Braathen","doi":"10.1111/bre.12890","DOIUrl":"https://doi.org/10.1111/bre.12890","url":null,"abstract":"<p>This study focuses on the Late Palaeozoic development of the area east of Utsira High in the North Sea, where the stratigraphic section below the late Permian Rotliegend Group is undrilled. We use regional 3D seismic data to study structuring, sediment distribution and geomorphology across the Patch Bank Ridge and Utsira High in the North Sea. The results show that the Stord Basin and the bounding Utsira East fault initially developed during the Late Palaeozoic extension, probably during the Devonian, and that the Utsira Shear Zone controlled the location of Late Palaeozoic depocentres. The Patch Bank Ridge is an uplifted part of the Stord Basin where we identify Late Palaeozoic growth strata along the southern and northern flanks, indicating a similar timing of the structural evolution in this area. Two key wells, in the Sele High and Ling Depression, are used to relate a Late Palaeozoic isopach map with regional structuring, surface tilt and basement morphology to the enigmatic parts of the Late Palaeozoic basin system. Our results supplement regional models for the Late Palaeozoic basin development, we suggest that the deeply eroded Devonian half-grabens preserved on the Utsira High formed parts of an extensive basin system that show stratigraphic expansion towards their bounding faults. The Top Basement surface at these highs offers several distinct geomorphologies that evolved during three periods of exposure, expressed as (i) a tilted and rugose landscape, (ii) distinct drainage networks and (iii) peneplain surfaces. Cover sediments place these landscapes to the (i) Devonian, (ii) Carboniferous/Permian/Triassic and (iii) Late Triassic periods.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 5","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12890","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basin ResearchPub Date : 2024-08-28DOI: 10.1111/bre.12895
Lucas Albanese Valore, Tor Oftedal Sømme, Stefano Patruno, Cécile Robin, François Guillocheau, Christian Haug Eide
{"title":"Palaeogeography and 3D variability of a dynamically uplifted shelf: Observations from seismic stratigraphy of the Palaeocene East Shetland Platform","authors":"Lucas Albanese Valore, Tor Oftedal Sømme, Stefano Patruno, Cécile Robin, François Guillocheau, Christian Haug Eide","doi":"10.1111/bre.12895","DOIUrl":"10.1111/bre.12895","url":null,"abstract":"<p>In the Palaeocene North Sea, pulses in turbidite fan deposition and shelfal progradation have been correlated with episodes of regional uplift caused by a precursor of the Icelandic Plume. In the East Shetland Platform, the specific impacts of dynamic uplift on the regional palaeogeographic evolution are less understood. Using new, high-resolution 3D seismic data from an underexplored proximal area, we investigate the palaeogeography of the East Shetland Platform in terms of the extent and timing of erosion versus deposition, focusing on how these can be used to reconstruct changes in relative sea-level along strike. Using a combination of well data, clinoform-based seismic stratigraphy and seismic attribute analysis of >60,000 km<sup>2</sup> of 3D data, we have obtained palaeogeographic maps of multiple Palaeocene to Early Eocene units, with high temporal resolution for the Late Palaeocene–Early Eocene Moray Group. This includes six unconformity-bounded units marked by prograding clinoforms of the Dornoch Formation, which are covered by backstepping sequences of the Beauly Member (Balder Formation). Temporal and spatial changes in the distribution of downdip depocentres and updip unconformities indicate strong lateral variability in patterns of shelf accommodation/erosion and local sediment supply. This results from a complex interplay among laterally uneven relative sea-level fall, inherited topography, time-varied sediment entry point distribution and along-shore sediment transport regimes. Unconformities and palaeogeographic maps suggest a first-order control on erosion and sediment distribution promoted by the transiently and differentially uplifted topography of Shetland, which is characterized by an anomalous erosive history in the Bressay High, in the centre of our study area, where the Lower Dornoch Formation has been eroded and marked fluvial incision is observed. Ultimately, results indicate shorter-wavelength and shorter-period variations in uplift than what is typically assumed for dynamic topography, perhaps as a result of additional modulation by lithospheric structures or influence of previous rift-related faults.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 5","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12895","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basin ResearchPub Date : 2024-08-13DOI: 10.1111/bre.12894
Qing Wang, Qiliang Sun, Kehua You, Martino Foschi
{"title":"Overpressure-driven hydrofracture growth in the northern South China Sea","authors":"Qing Wang, Qiliang Sun, Kehua You, Martino Foschi","doi":"10.1111/bre.12894","DOIUrl":"https://doi.org/10.1111/bre.12894","url":null,"abstract":"<p>Overpressure-driven hydrofracturing pervasively occurs in sedimentary basins worldwide. Hydrofracture zones can vertically penetrate several kilometres of rocks and are dominant pathways for basin-scale fluid migration and energy circulations. Although hydrofracture zones have been extensively described and analysed in the literature, the mechanisms on how hydrofracture zones form and evolve are still poorly understood. In this study, we explore the formation and evolution of a hydrofracture zone in the northern South China Sea, using numerical models constrained by borehole and seismic data. We show that the radius of hydrofracture zone decreases with the strata permeability. The growth of hydrofracture zone is mainly controlled by rock density (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ρ</mi>\u0000 </mrow>\u0000 <annotation>$$ rho $$</annotation>\u0000 </semantics></math>), pressure at the origin of hydrofracture zone (<i>p</i><sub>b</sub>), Poisson's ratio (<i>v</i>), and the radius of the hydrofracture zone at its origin (<i>r</i>). Moreover, as the hydrofracture zone grows, a transition layer forms between the overpressured hydrofracture zone and the overlying hydrostatic pressure zone. The thickness of this transition layer is controlled by strata permeability, strata thickness, overpressure, and pressure gradient within the hydrofracture zone. This study quantitatively explores the development and evolution of overpressure-driven hydrofractures for the first time, and has wide applications in geohazard assessment, hydrocarbon exploration, carbon circulation, and climatic change.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basin ResearchPub Date : 2024-08-13DOI: 10.1111/bre.12893
Alexandre Pichat, Vincent Delhaye-Prat, Michel Guiraud, Laurent Gindre-Chanu, Eric C. Gaucher
{"title":"Palaeogeography and tectono-stratigraphic evolution of the Aptian Ezanga-Loémé evaporites along the proximal domain of the south Gabon-Congo-Cabinda margin","authors":"Alexandre Pichat, Vincent Delhaye-Prat, Michel Guiraud, Laurent Gindre-Chanu, Eric C. Gaucher","doi":"10.1111/bre.12893","DOIUrl":"10.1111/bre.12893","url":null,"abstract":"<p>During the Early Cretaceous, massive evaporite accumulations formed in the opening South Atlantic. However, the depositional model of these salts is still poorly constrained at the scale of the West African margin. The present study focuses along the proximal domain of the south Gabon-Congo-Cabinda margin and is based on (i) log interpretations of 246 wells crossing undeformed to weakly deformed evaporite intervals and (ii) a structural characterization of the basement. The evaporites show 11 regional evaporite depositional cycles (CI–CXI) bounded by meter-thick shale beds. The cycles display alternating meter-scale carnallite-halite beds that can be correlated over several hundred kilometres, and CVI, CVII, CVIIIa and CX culminate in localized tachyhydrite accumulations. Cross section correlations and isopach maps help to understand the palaeogeographical evolution of each cycle and depositional environments that evolved from relatively deep at the base of cycles, to very shallow at their top. CI formed a mosaic of halite-prone depocenters deposited in pre-salt topographic relief. CII and CIII were deposited uniformly over a flattened basin in a highly extended brine pond. From CIV to CVIIIa, the stratigraphic architecture of the salts was shaped by freshwater inflow sourced from the north and possible basement movements. This setting, together with an increased confinement of the proximal domain from the distal one with basin drawdown, favoured the development of depocenters with perennial subaqueous conditions and extreme salinities, in which more than 70 m of tachyhydrite accumulation could locally be preserved. From CVIIIb to CXI, the basin returned to a flat depositional setting without well-developed depocenters and with increasing subsidence westwards. Marine influx increased starting from CX, allowing the deposition of sulphate beds. The salt section is capped by anhydrite deposits interbedded with clastic and dolomite, before the final marine invasion of the basin. For the first time, this study provides a large-scale depositional tectonostratigraphic setting of the Aptian salts in the proximal domain of the West African margin. The results are of interest for K-Mg salts exploration resources in the Aptian and pave the way for further investigation of the salt depositional environment in the distal domain of the margin.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The contribution and impact of shallow water platform as a potential source area on siliceous submarine fans","authors":"Xiaobo Zheng, Hongtao Zhu, Qianghu Liu, Zhiwei Zeng, Zhongheng Sun, Caiwei Fan","doi":"10.1111/bre.12891","DOIUrl":"10.1111/bre.12891","url":null,"abstract":"<p>The shelf-margin deltas are the primary ‘sources’ of interest in siliceous submarine fan source-to-sink systems. However, less has yet to be discovered about the roles and effects of the shallow water platform situated on continental slopes. Using the Miocene sediments of the Ledong-Lingshui Sag in the western part of the Qiongdongnan Basin (QDNB), this paper studies the YC35 coarse-grained submarine fan that developed in the Meishan Formation (Fm.). The material sources, depositional characteristics, and developmental mechanisms of this fan were investigated. The restored palaeogeomorphology, based on high-resolution 3D seismic data, shows that a shallow water platform exists. According to geochemical palaeoenvironmental data, the shallow water platform was ideal for forming carbonate deposits in the Meishan Fm., owing to the warm and humid palaeoclimate and the shifting trend in palaeowater depth. Based on the combined source tracing of heavy minerals, coherence slices, and seismic profiles, the shallow water platform and the Ningyuan River source on Hainan Island contributed to the YC35 coarse-grained submarine fan. Compared to submarine fans formed during different periods, coarse-grained fan stands out due to its distinct sedimentary structure, rock composition, and microlithological characteristics. Aside from not following the usual Bowmar sequence, there is an excess of gravel and no clear bedding or lamination. A large number of rock fragments, mostly granite and sedimentary rock (carbonatite), make up the rock composition. According to these results, the shallow water platform significantly affects submarine fan material composition. In addition, the attribute slice based on the root mean square reveals that shallow water platforms moderate peripheral deposition. We attribute the development and proximal supply of the shallow water platform to diapirism and forced regression. Our research provides novel insights and comprehension into the investigation of submarine fan sedimentary systems.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basin ResearchPub Date : 2024-08-07DOI: 10.1111/bre.12892
Ido Sirota, Yoav Ben Dor, Zohar Gvirtzman
{"title":"Short-term climatic oscillations versus long-term delta propagation: Controls on sand transport into the deep Levant Basin since the Pliocene","authors":"Ido Sirota, Yoav Ben Dor, Zohar Gvirtzman","doi":"10.1111/bre.12892","DOIUrl":"10.1111/bre.12892","url":null,"abstract":"<p>Sand transport and its deposition in deep marine basins are controlled by diverse climatic, tectonic, physiographic and oceanographic processes. Disentangling the impact of each of these drivers on the sedimentary record is a fundamental challenge in the study of source to sink systems. In this study, we investigate seismic and borehole data by combining statistical and spectral analyses to identify the factors controlling sand deposition in the deep Levant Basin (Eastern Mediterranean) during the Pliocene–Quaternary (PQ). We interpret the sand content in boreholes from gamma ray (GR) logs and identify two major trends in sand/shale ratios. On a million-year scale, we demonstrate that since the Early Pliocene (5.3 Ma), sand content gradually increased until it formed a ca. 100 m thick and widespread sheet of sand at the top of the section. On a shorter time scale, we identify oscillations in sand content depicting significant power of periodic components at the 350–450 ky, 90–150 ky and 10s ky bands. The long-term increase in sand content reaching the deep Levant Basin is interpreted as a result of the Nile Delta propagation, which had continuously shortened the distance between the edge of the Nile delta that is the source of sand, and the deep Levant Basin. The superimposed short-term oscillations are interpreted as Milanković cycles, reflecting hydroclimatic oscillations of water and sediment discharge into the Eastern Mediterranean Sea by the Nile River. This demonstrates the hydroclimatic control on sand deposition in the deep Levant Basin. Our observations are consistent with the development of a submarine channel system along with the accretion of the Nile delta, which may have served as a pathway for sand delivery via high-energy turbidity currents that reached the Levant Basin.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12892","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basin ResearchPub Date : 2024-07-25DOI: 10.1111/bre.12889
Jhon M. Muñoz-Barrera, Rob Gawthorpe, Tim Cullen, Sofia Pechlivanidou, Gijs Henstra, Atle Rotevatn, Ian Sharp
{"title":"Tectono-sedimentary evolution of high-displacement crustal-scale normal faults and basement highs on rifted margins: Klakk Fault Complex and Frøya High, Mid-Norwegian Margin","authors":"Jhon M. Muñoz-Barrera, Rob Gawthorpe, Tim Cullen, Sofia Pechlivanidou, Gijs Henstra, Atle Rotevatn, Ian Sharp","doi":"10.1111/bre.12889","DOIUrl":"10.1111/bre.12889","url":null,"abstract":"<p>Crustal-scale high-displacement (>10 km) normal faults are not captured in existing tectono-sedimentary models of rift basins. We used 2D and 3D seismic reflection and well data to perform a structural and source-to-sink analysis of the southern part of the Klakk Fault Complex and the western part of the Vingleia Fault Complex, Mid-Norwegian rifted margin. The north–south trending Klakk Fault Complex has a zig-zag to sinuous plan-view geometry, forming a series of structural recesses and salients along strike. In cross-section, the fault complex has a listric to convex-up or low-angle planar geometry with displacements above 20 km. This fault complex exhumed basement highs, the Frøya High and Sklinna Ridge, in its footwall and created a series of supradetachment basins, for example, the Rås Basin, in its hanging wall. In contrast, the northeast-southwest trending Vingleia Fault Complex has a zig-zag geometry in plan view and planar to listric geometry in cross-section and displacement of up to 5 km. This fault has the Frøya High in its footwall and the southern Halten Terrace in its hanging wall. Restoration of selected structural cross-sections shows a prominent fault-parallel ridge, up to 15 km east of the Klakk Fault Complex interpreted as a palaeodrainage divide. This divide separates steep drainages developed along the west-dipping footwall scarp to the Klakk Fault Complex, from broader, gentler east-dipping drainages up to ca. 10 km long developed on a back-tilted dip slopes along the eastern side of the Frøya High and Sklinna Ridge. Progressive headward erosion of active flank catchments was enhanced around topographically elevated structural salients to the point of capturing previous dip-slope-directed drainages during the earliest Cretaceous. A network of submarine canyons develop down-dip of the drainage catchments along the Klakk Fault Complex scarp, whose geometries and length are controlled by their location with respect to the structural salients or recesses, and the presence of fault terraces. The middle Jurassic-earliest Cretaceous synrift deposits form two seismic sequences that are filled with five distinctive seismic facies that record the evolution from a linked normal fault during rift climax to a high-displacement stage. During the high displacement stage, exhumed local continental core complexes formed structural salients, separated along strike by structural recesses at the heads of supradetachment basins. Key elements of the high-displacement fault stage include (i) the development of structural salients at sites of rift climax displacement maxima, (ii) development of supradetachment basins in rift climax displacement minima and (iii) migration of major depocentres away from the centre of rift climax fault segments. We synthesise these observations into a generic tectono-sedimentary model for high-displacement faults.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New insights into the structure of the Yinggehai Basin and its tectonic implications, South China Sea: Evidence from scaled physical models","authors":"Gengxiong Yang, Hongwei Yin, Dong Jia, Hongbin Wang, Wei Wang, Wenqiao Xu","doi":"10.1111/bre.12888","DOIUrl":"10.1111/bre.12888","url":null,"abstract":"<p>The Yinggehai Basin is situated at the junction of Indochina and the northern South China Sea (SCS). The origin of the Yinggehai Basin is generally believed to be controlled by the rotation of the Indochina block along the Red River shear zone (RRSZ), which was formed by the collision of India with Asia during the Oligocene. However, the Eocene structural mechanisms of this basin remain debatable. Some studies suggest that the Eocene reactivation of the palaeo-suture zone (which serves as a precursor to the RRSZ) has influenced the region. In contrast, others propose that the NNW–SSE extension of the northern SCS caused by the subduction of the palaeo-SCS towards Borneo in the Eocene has played a significant role. To address these controversies, our study takes into account these two crucial factors using physical analogue modelling. The experimental results, including slow sinistral strike-slip along the palaeo-suture zone and the adjacent NNW–SSE extension, successfully explain the observed fault pattern during the Eocene period. It is noteworthy that the former primarily controlled the Eocene structure in the northern region of the Yinggehai Basin, whereas the latter played a pivotal role in shaping the ENE–WSW Eocene structures on the eastern slope of the basin. The westward propagating faults of the Qiongdongnan basin are cut off by the Yinggehai Basin structures at later large-scale rotation stage. The experiment indicates that the basin evolution exhibits diachronous characteristics, with subsidence in the south occurring later than in the north. Our modelling results provide valuable insights into the key controlling factors that shaped the evolution of the basin during each stage. Furthermore, our findings offer evidence of the interaction between two significant tectonic processes: Indochina extrusion and the opening of the SCS.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basin ResearchPub Date : 2024-07-22DOI: 10.1111/bre.12884
Ashley J. M. Ayckbourne, Rhodri M. Jerrett, Matthew P. Watkinson, Miquel Poyatos-Moré, Ian A. Kane, Stephen Covey-Crump, Kevin G. Taylor
{"title":"Initiation and evolution of an epicontinental shelf-slope margin in an actively contracting deep-water basin: The Eocene Aínsa Basin, southern Pyrenees (Spain)","authors":"Ashley J. M. Ayckbourne, Rhodri M. Jerrett, Matthew P. Watkinson, Miquel Poyatos-Moré, Ian A. Kane, Stephen Covey-Crump, Kevin G. Taylor","doi":"10.1111/bre.12884","DOIUrl":"10.1111/bre.12884","url":null,"abstract":"<p>The shelf-slope margin is a geomorphic zone with a change in gradient between subaqueous shelves and slopes, which extends towards the submarine basin-floor. It is important because it partitions distinct sedimentary and biogenic processes between the shallow and deep-water realms. The initiation of a shelf-slope profile from pre-existing conditions, and the evolution of shelf margins in space and time has been the focus of numerous studies, particularly from seismic data sets on passive margins, although markedly less-so from active tectonic settings. This study documents the initiation and evolution of a shelf-slope margin in the well-studied Eocene Aínsa Basin (Spanish Pyrenees) through the segmentation of a mixed carbonate-siliciclastic ramp via contractional tectonics and differential subsidence. The basinward propagation of a series of thrusts through the ramp allowed the maintenance of shallow-water, predominantly carbonate sedimentation on their uplifted hanging wall anticlines. Conversely, the deepened foot wall synclines became muddy slope environments, and their axes became the main loci of siliciclastic turbidity current bypass and deposition. The deflection of turbidity currents around uplifted areas towards the synclinal lows allowed for the continuation of carbonate production at the bathymetric highs, which kept pace with subsidence. The interface between shallow- and deep-water sedimentation (i.e. the shelf-slope margin) was an erosional and composite submarine scarp surface generated by several phases of large-scale mass wasting of the aggrading shelf carbonates, and healing by onlap of slope turbidites against the scarp. Continued thrust propagation and basin deepening led to the progressive headward degradation of the surfaces, resulting in an apparent retrogradation of the shelf-slope margin and onlapping slope deposits. This model for the tectonically controlled conversion of a submarine ramp into a shelf-slope profile contrasts with conventional models that consider shelf-slope margins to be inherently progradational after initiation. This study also challenges the notion that large-scale degradational surfaces and thick successions of submarine landslides are inherently diagnostic of canyons and their fill.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12884","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}