Formation of the Central Tibet Watershed Mountains in the Late Jurassic: Evidence From Provenance Mapping of the Source‐to‐Sink System in the Qiangtang Basin

IF 2.8 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Basin Research Pub Date : 2025-01-18 DOI:10.1111/bre.70017
Jiawei Zhang, Yalin Li, Jiarun Tu, Zhongpeng Han, Jingen Dai, Huiping Zhang, Huan Kang
{"title":"Formation of the Central Tibet Watershed Mountains in the Late Jurassic: Evidence From Provenance Mapping of the Source‐to‐Sink System in the Qiangtang Basin","authors":"Jiawei Zhang, Yalin Li, Jiarun Tu, Zhongpeng Han, Jingen Dai, Huiping Zhang, Huan Kang","doi":"10.1111/bre.70017","DOIUrl":null,"url":null,"abstract":"The Central Tibet Watershed Mountains (CTWMs) are located in the hinterland of the Tibetan Plateau, extending over 1000 km from west to east. These mountains currently function as a drainage divide, separating Tibet's rivers into eastward‐ and southward‐flowing systems to the north and the south of the mountains, respectively. The timing of watershed formation remains contentious, which hinders a comprehensive understanding of the geomorphic evolution of the Tibetan Plateau. The Qiangtang basin, where the CTWMs are situated, preserves critical geological records essential for deciphering landscape evolution. The age distributions of new detrital zircon U–Pb data from the Middle and Upper Jurassic sandstones in the northern Qiangtang sub‐basin are consistent with a published data set, with age clusters at 200–300, 500–700, 800–1000, 1800–2000 and 2400–2600 Ma. Qualitative provenance analysis identifies the major source rocks as the Palaeozoic and Upper Triassic strata in the CTWMs, as well as the Triassic turbidites in the Hoh Xil‐Songpan Ganze terrane (HSG), which bound the northern Qiangtang sub‐basin to the south and north, respectively. Minor contributions come from Late Triassic intrusive and volcanic rocks, as well as Jurassic granitoids. The abundant detrital zircon data from the Qiangtang basin offers an opportunity to investigate the formation of the CTWMs through a quantified interpretation of the source‐to‐sink system. The combination of inverse and forward modelling of large detrital data sets facilitates the creation of provenance maps and avoids laborious descriptions of individual age modes. Integrated with sandstone petrographic analysis and paleocurrent data, the provenance of the Jurassic sediments can be quantitatively constrained. The CTWMs within the Qiangtang basin consistently served as significant sources throughout the Jurassic, while younger zircon grains were contributed by local sources, including the Triassic and Jurassic magmatic rocks. The proportion of the HSG source in the north increased throughout the basin in the Middle Jurassic but decreased dramatically in the southern Qiangtang sub‐basin during the Late Jurassic. We interpret that the embryonic stage of the CTWMs, which did not fully prevent sediment transport from the HSG to the southern Qiangtang sub‐basin, persisted from the Early to Middle Jurassic. The formation of a well‐defined watershed occurred in central Tibet in the Late Jurassic, probably triggered by the trench‐parallel mid‐ocean ridge subduction of the Bangong‐Nujing oceanic lithosphere.","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"23 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/bre.70017","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Central Tibet Watershed Mountains (CTWMs) are located in the hinterland of the Tibetan Plateau, extending over 1000 km from west to east. These mountains currently function as a drainage divide, separating Tibet's rivers into eastward‐ and southward‐flowing systems to the north and the south of the mountains, respectively. The timing of watershed formation remains contentious, which hinders a comprehensive understanding of the geomorphic evolution of the Tibetan Plateau. The Qiangtang basin, where the CTWMs are situated, preserves critical geological records essential for deciphering landscape evolution. The age distributions of new detrital zircon U–Pb data from the Middle and Upper Jurassic sandstones in the northern Qiangtang sub‐basin are consistent with a published data set, with age clusters at 200–300, 500–700, 800–1000, 1800–2000 and 2400–2600 Ma. Qualitative provenance analysis identifies the major source rocks as the Palaeozoic and Upper Triassic strata in the CTWMs, as well as the Triassic turbidites in the Hoh Xil‐Songpan Ganze terrane (HSG), which bound the northern Qiangtang sub‐basin to the south and north, respectively. Minor contributions come from Late Triassic intrusive and volcanic rocks, as well as Jurassic granitoids. The abundant detrital zircon data from the Qiangtang basin offers an opportunity to investigate the formation of the CTWMs through a quantified interpretation of the source‐to‐sink system. The combination of inverse and forward modelling of large detrital data sets facilitates the creation of provenance maps and avoids laborious descriptions of individual age modes. Integrated with sandstone petrographic analysis and paleocurrent data, the provenance of the Jurassic sediments can be quantitatively constrained. The CTWMs within the Qiangtang basin consistently served as significant sources throughout the Jurassic, while younger zircon grains were contributed by local sources, including the Triassic and Jurassic magmatic rocks. The proportion of the HSG source in the north increased throughout the basin in the Middle Jurassic but decreased dramatically in the southern Qiangtang sub‐basin during the Late Jurassic. We interpret that the embryonic stage of the CTWMs, which did not fully prevent sediment transport from the HSG to the southern Qiangtang sub‐basin, persisted from the Early to Middle Jurassic. The formation of a well‐defined watershed occurred in central Tibet in the Late Jurassic, probably triggered by the trench‐parallel mid‐ocean ridge subduction of the Bangong‐Nujing oceanic lithosphere.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Basin Research
Basin Research 地学-地球科学综合
CiteScore
7.00
自引率
9.40%
发文量
88
审稿时长
>12 weeks
期刊介绍: Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信