Astrobiology最新文献

筛选
英文 中文
Chapter 2: What Is Life? 第 2 章:生命是什么?
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-03-01 DOI: 10.1089/ast.2021.0116
Stephanie Colón-Santos, Alberto Vázquez-Salazar, Alyssa Adams, José Alberto Campillo-Balderas, Ricardo Hernández-Morales, Rodrigo Jácome, Israel Muñoz-Velasco, Laura E Rodriguez, Micah J Schaible, George A Schaible, Nadia Szeinbaum, Jennifer L Thweatt, Gareth Trubl
{"title":"Chapter 2: What Is Life?","authors":"Stephanie Colón-Santos, Alberto Vázquez-Salazar, Alyssa Adams, José Alberto Campillo-Balderas, Ricardo Hernández-Morales, Rodrigo Jácome, Israel Muñoz-Velasco, Laura E Rodriguez, Micah J Schaible, George A Schaible, Nadia Szeinbaum, Jennifer L Thweatt, Gareth Trubl","doi":"10.1089/ast.2021.0116","DOIUrl":"10.1089/ast.2021.0116","url":null,"abstract":"<p><p>The question \"What is life?\" has existed since the beginning of recorded history. However, the scientific and philosophical contexts of this question have changed and been refined as advancements in technology have revealed both fine details and broad connections in the network of life on Earth. Understanding the framework of the question \"What is life?\" is central to formulating other questions such as \"Where else could life be?\" and \"How do we search for life elsewhere?\" While many of these questions are addressed throughout the Astrobiology Primer 3.0, this chapter gives historical context for defining life, highlights conceptual characteristics shared by all life on Earth as well as key features used to describe it, discusses why it matters for astrobiology, and explores both challenges and opportunities for finding an informative operational definition.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S40-S56"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planetary Protection Knowledge Gap Closure Enabling Crewed Missions to Mars. 缩小行星保护知识差距,实现火星载人飞行任务。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-03-01 DOI: 10.1089/ast.2023.0092
James A Spry, Bette Siegel, Corien Bakermans, David W Beaty, Mary-Sue Bell, James N Benardini, Rosalba Bonaccorsi, Sarah L Castro-Wallace, David A Coil, Athena Coustenis, Peter T Doran, Lori Fenton, David P Fidler, Brian Glass, Stephen J Hoffman, Fathi Karouia, Joel S Levine, Mark L Lupisella, Javier Martin-Torres, Rakesh Mogul, Karen Olsson-Francis, Sandra Ortega-Ugalde, Manish R Patel, David A Pearce, Margaret S Race, Aaron B Regberg, Petra Rettberg, John D Rummel, Kevin Y Sato, Andrew C Schuerger, Elliot Sefton-Nash, Matthew Sharkey, Nitin K Singh, Silvio Sinibaldi, Perry Stabekis, Carol R Stoker, Kasthuri J Venkateswaran, Robert R Zimmerman, Maria-Paz Zorzano-Mier
{"title":"Planetary Protection Knowledge Gap Closure Enabling Crewed Missions to Mars.","authors":"James A Spry, Bette Siegel, Corien Bakermans, David W Beaty, Mary-Sue Bell, James N Benardini, Rosalba Bonaccorsi, Sarah L Castro-Wallace, David A Coil, Athena Coustenis, Peter T Doran, Lori Fenton, David P Fidler, Brian Glass, Stephen J Hoffman, Fathi Karouia, Joel S Levine, Mark L Lupisella, Javier Martin-Torres, Rakesh Mogul, Karen Olsson-Francis, Sandra Ortega-Ugalde, Manish R Patel, David A Pearce, Margaret S Race, Aaron B Regberg, Petra Rettberg, John D Rummel, Kevin Y Sato, Andrew C Schuerger, Elliot Sefton-Nash, Matthew Sharkey, Nitin K Singh, Silvio Sinibaldi, Perry Stabekis, Carol R Stoker, Kasthuri J Venkateswaran, Robert R Zimmerman, Maria-Paz Zorzano-Mier","doi":"10.1089/ast.2023.0092","DOIUrl":"10.1089/ast.2023.0092","url":null,"abstract":"<p><p>As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection \"knowledge gaps\" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 3","pages":"230-274"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardware Development for Plant Cultivation Allowing In Situ Fluorescence Analysis of Calcium Fluxes in Plant Roots Under Microgravity and Ground-Control Conditions. 用于植物栽培的硬件开发,允许在微重力和地面控制条件下对植物根部的钙通量进行原位荧光分析。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-03-01 DOI: 10.1089/ast.2023.0038
Magnus Rath, Michaela Dümmer, Jens Hauslage, Christian Liemersdorf, Christoph Forreiter
{"title":"Hardware Development for Plant Cultivation Allowing <i>In Situ</i> Fluorescence Analysis of Calcium Fluxes in Plant Roots Under Microgravity and Ground-Control Conditions.","authors":"Magnus Rath, Michaela Dümmer, Jens Hauslage, Christian Liemersdorf, Christoph Forreiter","doi":"10.1089/ast.2023.0038","DOIUrl":"10.1089/ast.2023.0038","url":null,"abstract":"<p><p>Maintaining an optimal leaf and stem orientation to yield a maximum photosynthetic output is accomplished by terrestrial plants using sophisticated mechanisms to balance their orientation relative to the Earth's gravity vector and the direction of sunlight. Knowledge of the signal transduction chains of both gravity and light perception and how they influence each other is essential for understanding plant development on Earth and plant cultivation in space environments. However, <i>in situ</i> analyses of cellular signal transduction processes in weightlessness, such as live cell imaging of signaling molecules using confocal fluorescence microscopy, require an adapted experimental setup that meets the special requirements of a microgravity environment. In addition, investigations under prolonged microgravity conditions require extensive resources, are rarely accessible, and do not allow for immediate sample preparation for the actual microscopic analysis. Therefore, supply concepts are needed that ensure both the viability of the contained plants over a longer period of time and an unhindered microscopic analysis in microgravity. Here, we present a customized supply unit specifically designed to study gravity-induced Ca<sup>2+</sup> mobilization in roots of <i>Arabidopsis thaliana</i>. The unit can be employed for ground-based experiments, in parabolic flights, on sounding rockets, and probably also aboard the International Space Station.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 3","pages":"275-282"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Memoriam: Wayne Lowell Nicholson, March 26, 1958-June 8, 2023. 悼念韦恩-洛厄尔-尼科尔森(Wayne Lowell Nicholson),1958 年 3 月 26 日至 2023 年 6 月 8 日。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-03-01 Epub Date: 2023-12-27 DOI: 10.1089/ast.2023.0100
Jamie S Foster, Tina M Henkin, Tony Romeo, Andrew C Schuerger, Peter Setlow, Robert J Ferl, Kelly C Rice, Eric W Triplett, Patricia Fajardo-Cavazos
{"title":"In Memoriam: Wayne Lowell Nicholson, March 26, 1958-June 8, 2023.","authors":"Jamie S Foster, Tina M Henkin, Tony Romeo, Andrew C Schuerger, Peter Setlow, Robert J Ferl, Kelly C Rice, Eric W Triplett, Patricia Fajardo-Cavazos","doi":"10.1089/ast.2023.0100","DOIUrl":"10.1089/ast.2023.0100","url":null,"abstract":"","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"227-229"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 10: Planetary Protection-History, Science, and the Future. 第 10 章:行星保护--历史、科学与未来。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-03-01 DOI: 10.1089/ast.2021.0112
Jordan McKaig, Tristan Caro, Dana Burton, Frank Tavares, Monica Vidaurri
{"title":"Chapter 10: Planetary Protection-History, Science, and the Future.","authors":"Jordan McKaig, Tristan Caro, Dana Burton, Frank Tavares, Monica Vidaurri","doi":"10.1089/ast.2021.0112","DOIUrl":"10.1089/ast.2021.0112","url":null,"abstract":"<p><p>Planetary protection is a principle in the design of interplanetary missions that aims to prevent biological cross contamination between the target body and Earth. Planetary protection policies and procedures have worked to mitigate forward contamination (from Earth) and back contamination (to Earth) since the beginning of the space age. Today, planetary protection policy is guided by international agreements, nongovernmental advisory councils, and national space agencies. The landscape of planetary protection science and policy is changing rapidly, as new technologies, crewed missions to Mars and the Moon, and even orbital settlements are being developed. Space exploration, whether specifically targeted toward questions in astrobiology or not, must consider planetary protection concerns to minimize contamination that poses a risk to both astrobiological investigations as well as Earth's biosphere. In this chapter, we provide an introduction to and overview of the history, motivations, and implementation of planetary protection in the United States.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S202-S215"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 6: The Breadth and Limits of Life on Earth. 第 6 章:地球生命的广度和极限。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-03-01 DOI: 10.1089/ast.2021.0131
Jennifer L Thweatt, C E Harman, M N Araújo, Jeffrey J Marlow, Gina C Oliver, Mary C Sabuda, Serhat Sevgen, Regina L Wilpiszeki
{"title":"Chapter 6: The Breadth and Limits of Life on Earth.","authors":"Jennifer L Thweatt, C E Harman, M N Araújo, Jeffrey J Marlow, Gina C Oliver, Mary C Sabuda, Serhat Sevgen, Regina L Wilpiszeki","doi":"10.1089/ast.2021.0131","DOIUrl":"10.1089/ast.2021.0131","url":null,"abstract":"<p><p>Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S124-S142"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 7: Assessing Habitability Beyond Earth. 第 7 章:评估地球之外的可居住性。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-03-01 DOI: 10.1089/ast.2021.0097
M J Styczinski, Z S Cooper, D M Glaser, O Lehmer, V Mierzejewski, J Tarnas
{"title":"Chapter 7: Assessing Habitability Beyond Earth.","authors":"M J Styczinski, Z S Cooper, D M Glaser, O Lehmer, V Mierzejewski, J Tarnas","doi":"10.1089/ast.2021.0097","DOIUrl":"10.1089/ast.2021.0097","url":null,"abstract":"<p><p>All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S143-S163"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chapter 3: The Origins and Evolution of Planetary Systems. 第 3 章:行星系统的起源与演化。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-03-01 DOI: 10.1089/ast.2021.0127
Micah J Schaible, Zoe R Todd, Eryn M Cangi, Chester E Harman, Kynan H G Hughson, Kamil Stelmach
{"title":"Chapter 3: The Origins and Evolution of Planetary Systems.","authors":"Micah J Schaible, Zoe R Todd, Eryn M Cangi, Chester E Harman, Kynan H G Hughson, Kamil Stelmach","doi":"10.1089/ast.2021.0127","DOIUrl":"10.1089/ast.2021.0127","url":null,"abstract":"<p><p>The materials that form the diverse chemicals and structures on Earth-from mountains to oceans and biological organisms-all originated in a universe dominated by hydrogen and helium. Over billions of years, the composition and structure of the galaxies and stars evolved, and the elements of life, CHONPS, were formed through nucleosynthesis in stellar cores. Climactic events such as supernovae and stellar collisions produced heavier elements and spread them throughout the cosmos, often to be incorporated into new, more metal-rich stars. Stars typically form in molecular clouds containing small amounts of dust through the collapse of a high-density core. The surrounding nebular material is then pulled into a protoplanetary disk, from which planets, moons, asteroids, and comets eventually accrete. During the accretion of planetary systems, turbulent mixing can expose matter to a variety of different thermal and radiative environments. Chemical and physical changes in planetary system materials occur before and throughout the process of accretion, though many factors such as distance from the star, impact history, and level of heating experienced combine to ultimately determine the final geophysical characteristics. In Earth's planetary system, called the Solar System, after the orbits of the planets had settled into their current configuration, large impacts became rare, and the composition of and relative positions of objects became largely fixed. Further evolution of the respective chemical and physical environments of the planets-geosphere, hydrosphere, and atmosphere-then became dependent on their local geochemistry, their atmospheric interactions with solar radiation, and smaller asteroid impacts. On Earth, the presence of land, air, and water, along with an abundance of important geophysical and geochemical phenomena, led to a habitable planet where conditions were right for life to thrive.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 S1","pages":"S57-S75"},"PeriodicalIF":4.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling Data Discovery with the Astrobiology Resource Metadata Standard. 利用天体生物学资源元数据标准实现数据发现。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-02-01 DOI: 10.1089/ast.2023.0067
Shawn R Wolfe, Barbara Lafuente, Richard M Keller, Angela M Detweiler, Thomas F Bristow, Mary N Parenteau, Kevin Boydstun, Christopher E Dateo, David J Des Marais, Linda L Jahnke, Sara Rojo, Nathan Stone, Mark Vorobets
{"title":"Enabling Data Discovery with the Astrobiology Resource Metadata Standard.","authors":"Shawn R Wolfe, Barbara Lafuente, Richard M Keller, Angela M Detweiler, Thomas F Bristow, Mary N Parenteau, Kevin Boydstun, Christopher E Dateo, David J Des Marais, Linda L Jahnke, Sara Rojo, Nathan Stone, Mark Vorobets","doi":"10.1089/ast.2023.0067","DOIUrl":"10.1089/ast.2023.0067","url":null,"abstract":"<p><p>As scientific investigations increasingly adopt Open Science practices, reuse of data becomes paramount. However, despite decades of progress in internet search tools, finding relevant astrobiology datasets for an envisioned investigation remains challenging due to the precise and atypical needs of the astrobiology researcher. In response, we have developed the Astrobiology Resource Metadata Standard (ARMS), a metadata standard designed to uniformly describe astrobiology \"resources,\" that is, virtually any product of astrobiology research. Those resources include datasets, physical samples, software (modeling codes and scripts), publications, websites, images, videos, presentations, and so on. ARMS has been formulated to describe astrobiology resources generated by individual scientists or smaller scientific teams, rather than larger mission teams who may be required to use more complex archival metadata schemes. In the following, we discuss the participatory development process, give an overview of the metadata standard, describe its current use in practice, and close with a discussion of additional possible uses and extensions.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 2","pages":"131-137"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA Polymerization in Icy Moon Abyssal Pressure Conditions. 冰月深渊压力条件下的 DNA 聚合。
IF 4.2 3区 物理与天体物理
Astrobiology Pub Date : 2024-02-01 Epub Date: 2023-01-09 DOI: 10.1089/ast.2021.0201
Lorenzo Carré, Ghislaine Henneke, Etienne Henry, Didier Flament, Éric Girard, Bruno Franzetti
{"title":"DNA Polymerization in Icy Moon Abyssal Pressure Conditions.","authors":"Lorenzo Carré, Ghislaine Henneke, Etienne Henry, Didier Flament, Éric Girard, Bruno Franzetti","doi":"10.1089/ast.2021.0201","DOIUrl":"10.1089/ast.2021.0201","url":null,"abstract":"<p><p>Evidence of stable liquid water oceans beneath the ice crust of moons within the Solar System is of great interest for astrobiology. In particular, subglacial oceans may present hydrothermal processes in their abysses, similarly to terrestrial hydrothermal vents. Therefore, terrestrial extremophilic deep life can be considered a model for putative icy moon extraterrestrial life. However, the comparison between putative extraterrestrial abysses and their terrestrial counterparts suffers from a potentially determinant difference. Indeed, some icy moons oceans may be so deep that the hydrostatic pressure would exceed the maximal pressure at which hydrothermal vent organisms have been isolated. While terrestrial microorganisms that are able to survive in such conditions are known, the effect of high pressure on fundamental biochemical processes is still unclear. In this study, the effects of high hydrostatic pressure on DNA synthesis catalyzed by DNA polymerases are investigated for the first time. The effect on both strand displacement and primer extension activities is measured, and pressure tolerance is compared between enzymes of various thermophilic organisms isolated at different depths.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"151-162"},"PeriodicalIF":4.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10495380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信