Charles S Cockell, John E Hallsworth, Sean McMahon, Stephen R Kane, Peter M Higgins
{"title":"金星生命的概念启发了宜居性的概念。","authors":"Charles S Cockell, John E Hallsworth, Sean McMahon, Stephen R Kane, Peter M Higgins","doi":"10.1089/ast.2023.0106","DOIUrl":null,"url":null,"abstract":"<p><p>An enduring question in astrobiology is how we assess extraterrestrial environments as being suitable for life. We suggest that the most reliable assessments of the habitability of extraterrestrial environments are made with respect to the empirically determined limits to known life. We discuss qualitatively distinct categories of habitability: <i>empirical habitability</i> that is constrained by the observed limits to biological activity; <i>habitability</i> sensu stricto, which is defined with reference to the known or unknown limits to the activity of all known organisms; and <i>habitability</i> sensu lato (habitability in the broadest sense), which is circumscribed by the limit of all possible life in the universe, which is the most difficult (and perhaps impossible) to determine. We use the cloud deck of Venus, which is temperate but incompatible with known life, as an example to elaborate and hypothesize on these limits.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"628-634"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Concept of Life on Venus Informs the Concept of Habitability.\",\"authors\":\"Charles S Cockell, John E Hallsworth, Sean McMahon, Stephen R Kane, Peter M Higgins\",\"doi\":\"10.1089/ast.2023.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An enduring question in astrobiology is how we assess extraterrestrial environments as being suitable for life. We suggest that the most reliable assessments of the habitability of extraterrestrial environments are made with respect to the empirically determined limits to known life. We discuss qualitatively distinct categories of habitability: <i>empirical habitability</i> that is constrained by the observed limits to biological activity; <i>habitability</i> sensu stricto, which is defined with reference to the known or unknown limits to the activity of all known organisms; and <i>habitability</i> sensu lato (habitability in the broadest sense), which is circumscribed by the limit of all possible life in the universe, which is the most difficult (and perhaps impossible) to determine. We use the cloud deck of Venus, which is temperate but incompatible with known life, as an example to elaborate and hypothesize on these limits.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"628-634\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2023.0106\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2023.0106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Concept of Life on Venus Informs the Concept of Habitability.
An enduring question in astrobiology is how we assess extraterrestrial environments as being suitable for life. We suggest that the most reliable assessments of the habitability of extraterrestrial environments are made with respect to the empirically determined limits to known life. We discuss qualitatively distinct categories of habitability: empirical habitability that is constrained by the observed limits to biological activity; habitability sensu stricto, which is defined with reference to the known or unknown limits to the activity of all known organisms; and habitability sensu lato (habitability in the broadest sense), which is circumscribed by the limit of all possible life in the universe, which is the most difficult (and perhaps impossible) to determine. We use the cloud deck of Venus, which is temperate but incompatible with known life, as an example to elaborate and hypothesize on these limits.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming